Marion Ristorcelli (Ph.D Student) Magalie Ochs (Associate Professor - LIS) Rémy Casanova (Associate Professor - ISM) IMPACT OF THE NONVERBAL BEHAVIOR OF VIRTUAL AUDIENCE ON USERS' PERCEPTION OF SOCIAL ATTITUDES

LABORATOIRE D'INFORMATIQUE A SYSTEMES UNITION

Aix*Marseille

Socialement engagée

INTRODUCTION

Virtual Reality (VR) as a training tool for public speaking

INTRODUCTION

- Virtual Reality (VR) as a training tool for public speaking (simulator)
- Importance of the nonverbal behavior of the Virtual Audience (VA)

INTRODUCTION

- Virtual Reality (VR) as a training tool for public speaking (simulator)
- Importance of the nonverbal behavior of the Virtual Audience (VA)

the speaker [Pertaub et al., 2002]

More **positive emotions** and

allows speakers to feel more

STATE OF THE ART – VIRTUAL AUDIENCE BEHAVIORAL MODEL

Several continuous models to map an individual's emotional state along dimnesions [Mehrabian, 1996]

Valence – Arousal Model [Chollet et al., 2014]

Valence = the audience's **opinion** (positive or negative feelings they have about the speaker or the presentation [Chollet et al., 2017]).

Arousal = the audience's engagement in the presentation [Chollet et al., 2017].

5

STATE OF THE ART – VIRTUAL AUDIENCE BEHAVIORAL MODEL

Problem ?

- Valence = This dimension only focuses on the affective reaction to the speaker or the presentation.
- What about the audience's agreement concerning what speaker is saying ?

STATE OF THE ART – VIRTUAL AUDIENCE BEHAVIORAL MODEL

Problem ?

- Valence = This dimension only focuses on the affective reaction to the speaker or the presentation.
- What about the audience's agreement concerning what speaker is saying ?

Epistemic Stance = Agreement \rightarrow The judgement or evaluation of the speaker's statement.

Affective Stance = Emotional state \rightarrow The emotional reaction expressed by the interlocutor [Chindamo et al., 2012].

Signal that contribute significantly to the valence assessment [Chollet and Scherer, 2017]

Arms crossing = Disagreement, dominance and disinterest from the audience [Doody and Peter Bull, 2011; Fabrizio Palmas et al., 2019; Straßmann et al., 2016]

Arm crossing = closed posture = sign of disengagement [Chollet and Scherer, 2017]

RESEARCH QUESTIONS

Q1 Can the valence dimension be subdivided into epistemic and affective stance?

RESEARCH QUESTIONS

Q1 Can the valence dimension be subdivided into epistemic and affective stance?

Which nonverbal behavioral signal is most involved in the perception of these new dimensions?

HYPOTHESES – H2

Most influential signal for the perception of the

virtual character's ...

EXPERIMENTAL PROTOCOL: VIRTUAL ENVIRONMENT AND VIRTUAL CHARACTER'S NONVERBAL BEHAVIOR

Head Movement	Facial Expressions	Arms Position	Torso Position	Gaze Direction
Nod (Nod)	Smile (Smi)	Fist under the chin (Chi)	Forward (For)	Look at the speaker (look)
Shake (Sha)	Frown (Fro)	Arms crossed (Cro)	Backward (Bac)	Look away from the speaker (away)
Tilt (Til)	Doubt (Dou)	Hands on Thight (Thi)	Straight (Str)	
No Movement (NoM)	No Expression (NoE)			

EXPERIMENTAL PROTOCOL: VIRTUAL ENVIRONMENT AND VIRTUAL CHARACTER'S NONVERBAL BEHAVIOR

Head Movement	Facial Expressions	Arms Position	Torso Position	Gaze Direction
Nod (Nod)	Smile (Smi)	Fist under the chin (Chi) (Forward (For)	Look at the speaker (look)
Shake (Sha)	Frown (Fro)	Arms crossed (Cro)	Backward (Bac)	Look away from the speaker (away)
Tilt (Til)	Doubt (Dou)	Hands on Thight (Thi)	Straight (Str)	
No Movement (NoM)	No Expression (NoE)			

1 Animation = a combination of several modalities, one for each signal

EXPERIMENTAL PROTOCOL: MEASURES

EXPERIMENTAL PROTOCOL: PROCEDURE

EXPERIMENTAL PROTOCOL: PROCEDURE FOR EACH ANIMATION

Animation (5s)

EXPERIMENTAL PROTOCOL: PROCEDURE FOR EACH ANIMATION

EXPERIMENTAL PROTOCOL: PROCEDURE FOR EACH ANIMATION

RESULTS: COMPUTED SCORES

Score	Calcul	Range
Engagement score	(Attentive + Interested) – (Distracted + Indifferent) Cronbach's α = 0.83	From -12 to 12
Epistemic stance score	Agree - Disagree Spearman's ρ = -0.60, <i>p</i> -value < 0.001	From -6 to 6
Affective stance score	Happy - Unhappy Spearman's ρ = -0.40, p -value < 0.001	From -6 to 6

RESULTS: Q1 - REPRESENTATION OF THE VIRTUAL AUDIENCE'S SOCIAL ATTITUDE

H1: Subdivision of valence into two dimensions: epistemic and affective stance

- IV = The animation identifier
- DV = Scores (engagement, epistemic stance and affective stance)

Score	Friedman Chi-Squared	DF	Significance
Engagement	453	49	p < 0.001
Epistemic stance	1477	49	p < 0.001
Affective stance	1410	49	p < 0.001

Nod_For_Thi_Smi_look (2) -Nod Str Cro Smi look (4) -Nod Bac Thi Smi look (3) -Nod_Str_Thi_Smi_look (1) -Nod_Bac_Thi_NoE_look (8) -Nod Str Thi NoE look (6) -Nod For Thi NoE look(7)-Nod Bac Cro Smi look (5) -Nod Str Cro NoE look (9)-Nod Bac Cro NoE look (10)-Til For Chi NoE look (23) -NoM_For_Thi_NoE_look (18) -Til For Thi NoE look (24) -NoM_For_Thi_NoE_away (40) -NoM_For_Chi_NoE_look (17) -NoM_For_Chi_NoE_away (39) -Til_Str_Thi_NoE_look (25) -NoM_Str_Cro_NoE_look (21) -Til_Str_Cro_NoE_look (27) -NoM_Str_Thi_NoE_look (19) -NoM Bac Thi NoE away (42)-NoM Str Cro NoE away (43) -NoM Bac Cro NoE away (44) -NoM_Str_Thi_NoE_away (41) -NoM Bac Thi NoE look (20)-Til_Bac_Cro_NoE_look (28) -NoM_Bac_Cro_NoE_look (22) -Til_Bac_Thi_NoE_look (26) -Til For Chi Dou look (11)-Til_Bac_Thi_Dou_look (14) -Til_Str_Thi_Dou_look (13) -Til Str Cro Dou look (15)-Til Bac Cro Dou look (16)-Til_For_Thi_Dou_look (12) -Sha_Bac_Thi_NoE_look (31) -NoM_Str_Cro_Fro_away (49) -Sha_For_Thi_NoE_look (29) -NoM_Str_Thi_Fro_away (47) -NoM_Bac_Thi_Fro_away (48) -Sha_Bac_Cro_NoE_look (33) -NoM_For_Thi_Fro_away (46) -NoM_For_Chi_Fro_away (45) -Sha Str Thi NoE look (30) -Sha Str Cro NoE look (32) -NoM Bac Cro Fro away (50) -Sha Bac Thi Fro look (36)-Sha Bac Cro Fro look (38)-Sha For Thi Fro look (34)-Sha Str Thi Fro look (35) -Sha Str Cro Fro look (37) -

Q1- DISTRIBUTION OF THE EPISTEMIC SCORE FOR EACH ANIMATION

Epistemic stance	Μ	SD
Agree	4.21	1.95
Neither agree nor disagree	0.09	1.43
Disagree	-4.25	2.10

Nod_For_Thi_Smi_look (2) -Nod Str Cro Smi look (4) -Nod Bac Thi Smi look (3) -Nod_Str_Thi_Smi_look (1) -Nod_Bac_Thi_NoE_look (8) -Nod Str Thi NoE look (6) -Nod For Thi NoE look (7)-Nod Bac Cro Smi look (5) -Nod Str Cro NoE look (9)-Nod Bac Cro NoE look (10) -Til For Chi NoE look (23) -NoM_For_Thi_NoE_look (18) -Til For Thi NoE look (24) -NoM_For_Thi_NoE_away (40) -NoM For Chi NoE look (17)-NoM_For_Chi_NoE_away (39) -Til_Str_Thi_NoE_look (25) -NoM_Str_Cro_NoE_look (21) -Til_Str_Cro_NoE_look (27) -NoM_Str_Thi_NoE_look (19) -NoM Bac Thi NoE away (42)-NoM Str Cro NoE away (43) -NoM Bac Cro NoE away (44) -NoM_Str_Thi_NoE_away (41) -NoM Bac Thi NoE look (20) -Til_Bac_Cro_NoE_look (28) -NoM_Bac_Cro_NoE_look (22) -Til_Bac_Thi_NoE_look (26) -Til_For_Chi_Dou_look (11) -Til_Bac_Thi_Dou_look (14) -Til_Str_Thi_Dou_look (13) -Til Str Cro Dou look (15)-Til Bac Cro Dou look (16)-Til_For_Thi_Dou_look (12) -Sha_Bac_Thi_NoE_look (31) -NoM_Str_Cro_Fro_away (49) -Sha_For_Thi_NoE_look (29) -NoM_Str_Thi_Fro_away (47) -NoM_Bac_Thi_Fro_away (48) -Sha_Bac_Cro_NoE_look (33) -NoM_For_Thi_Fro_away (46) -NoM For Chi Fro away (45) -Sha_Str_Thi_NoE_look (30) -Sha Str Cro NoE look (32)-NoM Bac Cro Fro away (50) -Sha Bac Thi Fro look (36)-Sha Bac Cro Fro look (38) -Sha_For_Thi_Fro_look (34) -Sha_Str_Thi_Fro_look (35) -Sha Str Cro Fro look (37)-

Q1- DISTRIBUTION OF THE EPISTEMIC SCORE FOR EACH ANIMATION

Epistemic stance	M	SD
Agree	4.21	1.95
Neither agree nor disagree	0.09	1.43
Disagree	-4.25	2.10

Animations 11, 14, 13, 15, 16, 12 : \rightarrow Head tilt + Doubt expression

Doubt score = 5.60 out of 7.

Animations \neq from the green cluster But not from the red and grey clusters.

Doutb \neq Neutral and not between agree and disagree.

27

Q1 - DISTRIBUTION OF THE **EPISTEMIC SCORE** FOR EACH ANIMATION

Epistemic stance	M	SD
Agree	4.21	1.95
Neither agree nor disagree	0.09	1.43
Disagree	-4.25	2.10

Nod and Smile → Green cluster (Agree)

Shake and Frown → Red cluster (Disagree)

Q1- DISTRIBUTION OF THE **AFFECTIVE SCORE** FOR EACH ANIMATION

Epistemic stance	Μ	SD
Нарру	4.06	1.62
Neutral	-0.02	1.61
Unhappy	-4.41	1.83

Q1 - DISTRIBUTION OF THE **AFFECTIVE SCORE** FOR EACH ANIMATION

Epistemic stance	Μ	SD
Нарру	4.06	1.62
Neutral	-0.02	1.61
Unhappy	-4.41	1.83

Smile → Green cluster (Happy)

Doubt → **Grey** cluster (**Neutral**)

Frown → Red cluster (Unhappy)

Doutb = Neutral and is between happy and unhappy.

н1 🗸

	Epis	temic	Stance	Апе	ective s	stance
Animations	Md	IQR	Label	Md	IQR	Label
Sha_For_Thi_NoE_look (29)	-4	2.0	D	0	2.0	N
Sha_Bac_Thi_NoE_look (31)	-4	2.0	D	0	2.0	Ν
Sha_Bac_Cro_NoE_look (33)	-4	3.0	D	-1	3.0	N
Sha_For_Thi_Fro_look (34)	-6	2.0	D	-5	2.0	Ū
Sha_Str_Thi_Fro_look (35)	-6	2.0	D	-5	2.5	U
Sha_Str_Cro_Fro_look (37)	-6	1.5	D	-5	2.0	U
Sha_Bac_Cro_Fro_look (38)	-6	2.0	\mathbf{D}	-6	2.0	\U/

Enternal Change Affection Ch

Table 1: Level of affective stance for a given epistemic stance. The seven animations are rated disagree (D) for the epistemic stance, three are rated neutral (N) and four are rated unhappy (U) for the affective stance.

Affective Stance

		ctive	Stance	Epis	temic	Stance
Animations	Md	IQR	Label	Md	IQR	Label
Sha_For_Thi_NoE_look (29)	0	2.0	N	-4	4.0	D
Til_For_Chi_Dou_look (11)	0	1.0	N	0	2.0	N
NoM_For_Chi_NoE_look (17)	0	2.0	N	0	1.0	N
NoM_For_Thi_NoE_look (18)	0	1.5	Ν	0	1.5	N
NoM_Str_Thi_NoE_look (19)	0	0.0	Ν	0	0.0	N
NoM_Bac_Thi_NoE_look (20)	0	0.0	Ν	0	0.0	N
NoM_Str_Cro_NoE_look (21)	0	0.5	Ν	0	0.0	N
NoM_Bac_Cro_NoE_look (22)	0	0.0	Ν	0	0.0	Ν
Til_For_Thi_NoE_look (24)	0	1.5	Ν	0	1.5	Ν
Til_Str_Thi_NoE_look (25)	0	0.5	Ν	0	1.0	Ν
Til_Bac_Thi_NoE_look (26)	0	0.0	Ν	0	0.0	Ν
Til_Str_Cro_NoE_look (27)	0	1.0	Ν	0	0.5	Ν
Til_Bac_Cro_NoE_look (28)	0	0.0	Ν	0	0.0	N
NoM_For_Chi_NoE_away (39)	0	0.0	Ν	0	0.0	N
NoM_For_Thi_NoE_away (40)	0	1.0	Ν	0	0.5	N
NoM_Str_Thi_NoE_away (41)	0	0.5	Ν	0	0.0	N
NoM_Bac_Thi_NoE_away (42)	0	0.0	N	0	0.0	N
NoM_Str_Cro_NoE_away (43)	0	0.0	N	0	0.0	N
NoM_Bac_Cro_NoE_away (44)	0	0.0	N	0	0.0	N

Table 2: Level of epistemic stance for a given affective stance. All animations are rated as neutral (N) for the affective stance, one is rated as disagreeing (D) and eighteen are rated as neither agreeing nor disagreeing (N) for the epistemic stance.

DISTRIBUTION OF THE ENGAGEMENT SCORE FOR EACH ANIMATION

Nod_For_Thi_Smi_look (2) Nod_Str_Cro_Smi_look (4)		
NoM_For_Ini_NoE_look (18) Nod_Str_Thi_Smi_look (1)		
Nod_Bac_Thi_Smi_look (3) Nod_Bac_Thi_Smi_look (3)		
Sha_For_Thi_NoE_look (29) Sha_For_Thi_For_look (34)		
Nod_Bac_Cro_NoE_look (10) NoM For Thi Fro away (46)		
Til_For_Chi_NoE_look (23) NoM_For_Chi_NoE_look (17)		
NoM_For_Chi_Fro_away (45) Nod_Bac_Thi_NoE_look (8)		
Nod_Str_Cro_NoE_look (9) Til_For_Chi_Dou_look (11) Til_For_Thi_Dou_look (12)		
Sha_Str_Thi_Fro_look (35) Sha Bac Thi Fro_look (36)		
Sha_Str_Cro_Fro_look (37) Sha_Bac_Cro_NoE_look (33)		
Sha_Str_Cro_NoE_look (32) Sha_Bac_Cro_Fro_look (38)		
E NoM_Bac_Cro_Fro_away (50)		
 Til_Str_Cro_Dou_look (15) NoM_Str_Thi_Fro_away (47) 		
NoM_Str_Cro_Fro_away (49) Nod_Str_Thi_NoE_look (6)		
NoM_Bac_Thi_Fro_away(48) Sha_Bac_Thi_NoE_look(31) NoM_Eor_Thi_NoE_away(40)		
NoM_Str_Cro_NoE_look(21) Til Str Thi Dou look(13)		
Til_Str_Thi_NoE_look (25) 		
Til_Bac_Cro_NoE_look (28) Til_Bac_Thi_Dou_look (14) Til_Bac_Thi_Dou_look (14)		
NoM_Str_Cro_NoE_away (43) NoM_Str_Thi_NoE_away (41)		
TII_Bac_ThI_NoE_look (26) NoM_Str_Thi_NoE_look (19)		
NoM_Bac_Cro_NoE_away (44) NoM_For_Chi_NoE_away (39)		
Nom_Bac_Cfo_NoE_100k(22) NoM_Bac_Thi_NoE_away(42) NoM_Bac_Thi_NoE_look(20)		
-1	0 -5 0 Engagement	5 10

RESULTS: Q2 - BEHAVIORAL SIGNALS CONVEYING SOCIAL DIMENSIONS

H2 : The main non-verbal behavioural signals involved in evaluating each stance are different: (H2.1) Head movement for epistemic stance and (H2.2) facial expression for affective stance.

- IV = The behavioral signals
- DV = Scores (engagement, epistemic stance and affective stance)

RESULTS: Q2 - BEHAVIORAL SIGNALS CONVEYING SOCIAL DIMENSIONS

H2 : The main non-verbal behavioural signals involved in evaluating each stance are different: (H2.1) Head movement for epistemic stance and (H2.2) facial expression for affective stance.

- IV = The behavioral signals
- DV = Scores (engagement, epistemic stance and affective stance)

Bayesian Model

$BF_{01} = \frac{\text{likelihood of data given } H_0}{\text{likelihood of data given } H_1}$

- This method makes it possible to confirm one hypothesis rather than another thanks to the strength of the evidence [Jarosz and Wiley, 2014]
- Some authors have tried to quantify the strength of the evidence in order to conclude based on the result of the previous ratio, thanks to different scales [Jeffreys, 1998; Kass and Raftery, 1995].

Our threshold \rightarrow BF > 10 [Procházka et al., 2017]

lf E	3F	>	100	\rightarrow	we	report	In(BF)	[Mascret	et	al.,	20	19]	
------	----	---	-----	---------------	----	--------	--------	----------	----	------	----	-----	--

Statistic (BF or inverse of BF)	Support for H (Jeffreys's scale)
1-3	Anecdotal
3-10	Substantial
10-20	Strong
20-30	Strong
30-100	Very Strong
100-150	Decisive
> 150	Decisive

RESULTS: H2.1 – HEAD MOVEMENTS PREDOMINATE FOR THE EPISTEMIC STANCE

Epistemic stance prediction using Bayes factor ANOVA

Models	P(M)	P(M data)	$\log(BF_M)$	$log(BF_{10})$	BF_{10}	error %
(3.1) Null model (incl. ID)	0.01	0.00	-1266.98	0.00	1.00	
(3.2) H.	0.01	1.16×10^{-167}	-379.27	887.71	3.39 ×10 ³⁸⁵	0.76
(3.3) Exp.	0.01	2.01×10^{-268}	-611.28	655.70	5.81×10^{284}	0.72

Simple models of :

- Head Movements (H.)
- Facial Expressions (Exp.)

H2.1 – HEAD MOVEMENTS PREDOMINATE FOR THE EPISTEMIC STANCE

Epistemic stance prediction using Bayes factor ANOVA

Models	P(M)	P(M data)	$\log(BF_M)$	$log(BF_{10})$	BF10	error %
(3.1) Null model (incl. ID)	0.01	0.00	-1266.98	0.00	1.00	
(3.2) H.	0.01	1.16×10^{-167}	-379.27	887.71	3.39×10^{385}	0.76
(3.3) Exp.	0.01	2.01 ×10 ⁻²⁶⁸	-611.28	655.70	5.81×10^{284}	0.72

Comparison of **the influence of head movements and facial expressions** on the perception of epistemic stance :

```
Ln(BF) = Model 3.2 / Model 3.3 = 232.02
```

The Head Movements are the first and most important signals for assessing the epistemic stance, followed by Facial Expressions.

RESULTS: H2.2 – FACIAL EXPRESSIONS PREDOMINATE FOR THE AFFECTIVE STANCE

Affective stance prediction using Bayes factor ANOVA

Models	P(M)	P(M data)	$\log(BF_M)$	$log(BF_{10})$	BF10	error %
(4.1) Null model (incl. ID)	0.01	0.00	-1266.98	0.00	1.00	
(4.2) Exp.	0.01	5.77×10^{-76}	-168.13	1027.82	2.41×10^{446}	0.59
(4.3) H.	0.01	2.41×10^{-294}	-670.97	524.99	9.80 ×10 ²²⁷	1.13

Simple models of :

- Facial Expressions (Exp.)
- Head Movements (H.)

H2.2 – FACIAL EXPRESSIONS PREDOMINATE FOR THE AFFECTIVE STANCE

Affective stance prediction using Bayes factor ANOVA

Models	P(M)	P(M data)	$\log(BF_M)$	$log(BF_{10})$	BF10	error %
(4.1) Null model (incl. ID)	0.01	0.00	-1266.98	0.00	1.00	
(4.2) Exp.	0.01	5.77×10^{-76}	-168.13	1027.82	2.41×10^{446}	0.59
(4.3) H.	0.01	2.41×10^{-294}	-670.97	524.99	9.80 ×10 ²²⁷	1.13

Comparison of **the influence of facial expressions and head movements** on the perception of affective stance :

Ln(BF) = **Model 4.2** / Model 4.3 = 502.86

The Facial Expressions are the first and most important signals for assessing the affective stance, followed by Head Movements.

CONCLUSION

- The valence dimension can be subdivided into two dimensions : The Epistemic Stance and Affective Stance.
- Each dimension is conveyed by different nonverbal behavioral signals.
- Doubt is perceived as a neutral expression but does not correspond to a neutral agreement.
- We were unable to represent disengagement based on the gaze direction.

Head Movements Facial Expressions

PERSPECTIVES

- Use a male character
- Model :
 - Identify the labels associated with each combination of dimensions
 - Formalise the model and propose a diagram
- Study the impact of these attitudes on the user's perceived difficulty in public speaking
- Study the perception of the overall attitude by varying the % of each attitude (80% benevolent and 20% critical)
- For the corpus collection : Positive / Negative attitude → Choose the animations perceived as the most negative and the most positive.

Marion Ristorcelli (Ph.D Student) Magalie Ochs (Associate Professor - LIS) Rémy Casanova (Associate Professor - ISM)

Aix*Marseille UNIVERSITÉ Socialement engagée

OUR VIRTUAL AUDIENCE BEHAVIORAL MODEL

Valence / Arousal model : 6 social attitudes → Critical, Bored, Indifferent, Interested, Enthusiastic, Disrespectful (Glémarec et al., 2021)

H2.1 – HEAD MOVEMENTS PREDOMINATE FOR THE EPISTEMIC STANCE

Models	P(M)	P(M data)	$log(BF_M)$	$log(BF_{10})$	BF_{10}	error %
(3.1) Null model (incl. ID)	0.01	0.00	-1266.98	0.00	1.00	
(3.2) H.	0.01	1.16×10^{-167}	-379.27	887.71	3.39×10^{385}	0.76
(3.3) Exp.	0.01	2.01×10^{-268}	-611.28	655.70	5.81×10^{284}	0.72
(3.4) H. + Exp.	0.01	2.91×10^{-34}	-72.11	1194.87	8.56 ×10 ⁵¹⁸	0.92
(3.5) H. + Exp. + H. * Exp.	0.01	1.10	2.96	1269.83	3.20×10^{551}	2.19

Table 3: Epistemic stance prediction using Bayes factor ANOVA: The table reports the results for the simple models of head movements (H.), facial expressions (Exp.), their association (+) and their interaction (*).

H2.2 – FACIAL EXPRESSIONS PREDOMINATE FOR THE AFFECTIVE STANCE

Models	P(M)	P(M data)	$log(BF_M)$	$log(BF_{10})$	BF ₁₀	error %
(4.1) Null model (incl. ID)	0.01	0.00	-1266.98	0.00	1.00	
(4.2) Exp.	0.01	5.77 ×10 ⁻⁷⁶	-168.13	1027.82	2.41×10^{446}	0.59
(4.3) H.	0.01	2.41×10^{-294}	-670.97	524.99	9.80 ×10 ²²⁷	1.13
(4.4) H. + Exp.	0.01	4.13×10^{-14}	-25.71	1170.25	1.80×10^{508}	1.10
(4.5) H. + Exp. + H. * Exp.	0.01	2.62×10^{-4}	-3.13	1192.82	1.24×10^{518}	7.93

Table 4: Affective stance prediction using Bayes factor ANOVA: The table reports the results for the simple models of head movements (H.), facial expressions (Exp.), their association (+) and their interaction (*).