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COMPOSITIONALITY & MEANING



SENTENCE-LEVEL COMPOSITIONALITY & USAGE
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SENTENCE-LEVEL COMPOSITIONALITY & USAGE?
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COMPOSITIONALITY AND MEANING, A DEFINITION

“The meaning of an expression is a function of the meanings of its
parts and of the way they are syntactically combined” [Partee, 1984]
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[MONTAGUE, 1973], COMPOSITIONAL SEMANTICS
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NNS, REASONING, AND COMPOSITIONALITY
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NEURAL NETWORKS AND COMPOSITIONALITY

In the past years, investigation of capacity of (neural) language
models to use/produce/deduce compositional rules/sentences.
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NEURAL NETWORKS AND COMPOSITIONALITY

In the past years, investigation of capacity of (neural) language
models to use/produce/deduce compositional rules/sentences.

e Tree-structured composition in neural networks without
tree-structured architectures, [Bowman et al., 2015]

e Diagnostic classifiers revealing how neural networks process
hierarchical structure, [Veldhoen et al., 2016]

e Siamese recurrent networks learn first-order logic reasoning
and exhibit zero-shot compositional generalization,
[Mul and Zuidema, 2019]
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NEURAL NETWORKS AND COMPOSITIONALITY

e Analysing mathematical reasoning abilities of neural models,
[Saxton et al,, 2019]

e Compositionality decomposed: How do neural networks
generalise?, [Hupkes et al., 2020]

e Logicinference: A New Dataset for Teaching Logical Inference to
seq2seq Models, [Ontanon et al,, 2022]

e Unit Testing for Concepts in Neural Networks,
[Lovering and Pavlick, 2022]
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S. Bowman, S. R, Manning, C. D., & Potts, C. (2015). Tree-structured
composition in neural networks without tree-structured
architectures. arXiv preprint arXiv:1506.04834.

Test whether neural sequence models such as LSTMs are able to
discover and implicitly use
(with explicit cues).

Results: tree models perform significantly better than LSTMs on
such tasks.

what type of logical relation (out of 7
possible) between pairs of sentences.
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Saxton, D., Grefenstette, E., Hill, F, & Kohli, P. (2019). Analysing
mathematical reasoning abilities of neural models. arXiv preprint
arxiv:1904.01557.

Task suite of mathematical problems (arithmetic, algebra,
probability, calculus) in English, question in English, short
answer: only number, yes, no.

Designed to test the capacity of NNs (Transformers and
Recurrent architectures) to mathematical concepts
and mathematical operations.

Performance varies greatly from one of problem to another.
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Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality
decomposed: How do neural networks generalise? Journal of
Artificial Intelligence Research, 67, 757-795.

Set of 5 tests for NNs capacity to
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Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality
decomposed: How do neural networks generalise? Journal of
Artificial Intelligence Research, 67, 757-795.

Set of 5 tests for NNs capacity to

(1) can they successfully known parts and rules?

(2) can they their predictions beyond the length they've
seen in training?

(3) do they in a local or in a global way?

(4) are their predictions robust to

(5) do they or exceptions during training?
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Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality
decomposed: How do neural networks generalise? Journal of
Artificial Intelligence Research, 67, 757-795.

Set of 5 tests for NNs capacity to

(1) can they successfully known parts and rules?

(2) can they their predictions beyond the length they've
seen in training?

(3) do they in a local or in a global way?

(4) are their predictions robust to

(5) do they or exceptions during training?

Instantiation of the 5 tests on an artifical dataset: PCFG SET, and
apply them to a recurrent NN, a convolution-based NN and a
transformer.
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IN OUR WORK [GUZMAN ET AL., 2022]

We would like to investigate the capacity of neural networks (NNs) to
learn

In a minimal setting: simple corpus, where all composition
comes from the

Testing different
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COMPOSITIONALITY, SIMPLE CORPUS, AND NNS

Given that a model can derive:
Premisses: “A — B" “B — ("

Conclusion: “A — C”

Then it should derive:
Premisses: “A — B" “B — ("
Conclusion: “A
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COMPOSITIONALITY, SIMPLE CORPUS, AND NNS

Given that a model can derive:
Premisses: “A — B" “B — ("

Conclusion: “A — C”

Then it should derive:

"o ”

Premisses: “X — —

”

Conclusion: “X —
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A SIMPLE CORPUS




CORPUS DESCRIPTION

Constants: C = {X;...Xn}

Formulas: “X; — X"

Xi—>Xj Xj—>Xk
Xi —)Xk

20 /41



EXAMPLE

{X] *)Xz, X2 *>X37 X3 4))(4, X44)X5}FX1 *)X5

(@ X1 = Xy @ Xo — X3
X1 — X ) X3 — X4
XW — X4 *) X4 — X5
X1 — X5
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KNOWLEDGE BASE (KB)
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KNOWLEDGE BASE (KB)

Parameters of the KB: # constants = 70, # premises = 82,
# hypotheses = 4,830, # valid hypotheses = 531.

Length of proof | # of proofs

0 4,299
82
75
63
60
51
54
41
42
35
28

O 0 N O U1 &~ W N

[EN
o
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CONNECTIONNIST COMPONENT

Given a knowledge base KB and a hypothesis h, our connectionist
component is a neural network that selects the (most likely) set of
formulas from KB that are necessary to derive h.

Architectures: Multilayer perceptron (MLP), Recurrent neural
network (RNN)
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CONNECTIONNIST COMPONENT

input output
Neural .
X y
input: X is a vector that encodes a set P = {p1, p2,..., pn} of all

premisses and a hypothesis h
output: § is a vector of size n such that for each i € [1..n]

o )1 ifpen
Y'=19 0 otherwise

Where = € P and 7 h, and = is necessary to prove h.
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EXAMPLE

1. X= [ MX2 — X7” ”XZ — X4" “X1 — Xz,”]
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EXAMPLE

1. X= [ MX2 — X7” ”XZ — X4" “X1 — Xz,”]

2. X= [MX’\ — X3" HX3 — Xsn “X6 — X4" “Xz — X7” “XQ — X4" “X1 = X7”]
g=[0 0 0 0 Q]
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EXPERIMENTS AND RESULTS




INITIAL EXPERIMENT — DATA DISTRIBUTION

Length of proofs | Total data | Train data | Test data
0 4299 3224 1075
1 82 62 20
2 75 56 19
3 63 47 16
4 60 45 15
5 51 38 13
6 54 40 14
7 41 31 10
8 42 32 10
9 35 26 9
10 28 21 7

Table: 75/25% split of the KB, stratified by length of proofs
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INITIAL EXPERIMENT — ACCURACIES

Length of proofs | MLP test | RNN test
0 99.91% 99.81%
1 40.00% | 50.00%
2 57.89% 63.16%
3 68.75% 75.00%
4 93.33% 93.33%
5 100.00% | 100.00%
6 100.00% | 100.00%
7 100.00% | 100.00%
8 100.00% | 90.00%
9 100.00% | 100.00%
10 100.00% | 100.00%
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INITIAL EXPERIMENT — ACCURACIES

|proofs| | MLPtest | RNN test | hypothesis | # of sub-proofs | # of formulas

0 99.91% 99.81% 3224 0 0

1 40.00% 50.00% 62 62 62

2 57.89% 63.16% 56 138 194
3 68.75% 75.00% 47 202 362
4 93.33% 93.33% 45 331 695
5 100.00% | 100.00% 38 416 1017
6 100.00% | 100.00% 40 640 1756
7 100.00% | 100.00% 31 645 2002
8 100.00% 90.00% 32 839 2869
9 100.00% | 100.00% 26 845 3178
10 100.00% | 100.00% 21 827 3384
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HAMMING DISTANCES

Let y be the expected output vector for our NN, § the actual output
vector:
[110071]

[0.68 0.98 0.33 0.12 0.46]
§~[11000]

y:
S\/:
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HAMMING DISTANCES

Let y be the expected output vector for our NN, § the actual output

vector:
y=[11001]
§ = [0.68 0.98 0.33 0.12 0.46]
§~[11000]

H(y,§) =1
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HAMMING DISTANCES — INITIAL EXPERIMENT

Error quantification -- Average Hamming distances Error quantification -- Average Hamming distances

mmm Hamming distance

= Hamming distance

Distance prediction/actual

Proof length Proof length
(a) MLP (b) RNN

Figure: Average Hamming distances between the expected output and the
actual output for the initial experiment
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COMPOSITIONALITY TESTS

We explored compositionality tests in the context of our simple
corpus.

Variations in the number of premisses needed to prove the

conclusion:

e Train on short proofs, test on long proofs
e Train on long proofs, test on short proofs

Permutations in the order of the constants
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VARIATIONS IN THE NUMBER OF PREMISSES

The model is trained on proofs from length n; to n, (ny < ny). Then,
how does it perform when confronted to valid proofs, including
proofs of length n < njorn > ny?
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VARIATIONS IN THE NUMBER OF PREMISSES — RESULTS

Train data | MLP test | RNN test Train data | MLP test | RNN test
0-9 100.0% | 100.0% 1-10 L4 1% 48.08%
0-8 92.06% | 93.65% 2-10 4095% | 41.61%
0-7 7333% | 82.86% 3-10 37.5% 40.13%
0-6 4589% | 65.07% 4-10 737% 11.06%
0-5 17.0% 46.0% 5-10 1.81% 2.16%

(a) Unseen longer proofs (b) Unseen shorter proofs
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PERMUTATIONS OF CONSTANTS

If the model has been trained on a given KB, then a permutation
function o : C — C has been applied to KB to obtain K£B', how will
the model behave with inputs from K£B'?
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KNOWLEDGE BASE (KB)
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PERMUTED KNOWLEDGE BASE (KB’)
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PERMUTATIONS OF CONSTANTS

Length of | MLP RNN
proofs test test

0 17.84% | 66.43%

1 0.00% | 0.00%

2 0.00% | 1.33%

3 0.00% | 0.00%

4 0.00% | 0.00%

5 0.00% | 0.00%

6 0.00% | 0.00%

7 0.00% | 0.00%

8 0.00% | 0.00%

9 0.00% | 0.00%

10 0.00% | 0.00%
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PERMUTATIONS OF CONSTANTS

Length of | MLP RNN
proofs test test

0 17.84% | 66.43%

1 0.00% | 0.00%

2 0.00% | 1.33%

3 0.00% | 0.00%

4 0.00% | 0.00%

5 0.00% | 0.00%

6 0.00% | 0.00%

7 0.00% | 0.00%

8 0.00% | 0.00%

9 0.00% | 0.00%

10 0.00% | 0.00%

Next test: how does the model behave w.rt permutation of
constants once it has been exposed to permuted constants?
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CONCLUSION




CONCLUSION & FUTURE WORK

NNs & compositionality:

NNs pick up some structure from data: some amount of
generalization in the variations in proof length compositionality
tests, sub-proofs play a role in learning;

Limited generalization: unseen length experiment, high
sensitivity to the order of constants, > overall structure of

the KB.
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CONCLUSION & FUTURE WORK

NNs & compositionality:

NNs pick up some structure from data: some amount of
generalization in the variations in proof length compositionality
tests, sub-proofs play a role in learning;

Limited generalization: unseen length experiment, high
sensitivity to the order of constants, > overall structure of
the KB.

To be investigated next:

what is the representation of the data that the NN builds in
training?

comparative studies through different dataset sizes, data
encodings, other NN architectures.
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(a) Minimal length of unseen proof: 0 (b) Maximal length of unseen proof: 10

Figure: Average Hamming distances between the expected output and the
actual output for the unseen length experiment, MLP
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= Hamming distance = Hamming distance
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(a) Minimal length of unseen proof: 0 (b) Maximal length of unseen proof: 10

Figure: Average Hamming distances between the expected output and the
actual output for the unseen length experiment, RNN
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DATA ENCODING

Each formula from input X is encoded in a vector of dimension 2n
(where n is the the size of the set C) as a one-hot fashion.

Example: let C = {X;, X3, X3, X4, Xs}, then the formula X; — Xs is

encoded as
[01000|00001]

where the first n digits represent X, and the constant Xs is encoded
within the last n bits from the vector.
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NEURAL NETWORKS SETUP

Architecture MLP RNN
Optimization algorithm Adamax algorithm, same
default learning rate 0.001

# hidden layers 1 2

# neurons in each layer 2500 200
Function in hidden layers hyperbolic tangent function (tanh) tanh

Function in the output layer sigmoid function sigmoid function

# epochs between 200 and 300 epochs same

batch size 20 20
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