COMPOSITIONALITY AND LOGIC IN LANGUAGE

Maria Boritchev

January 5th, 2023

Institute of Mathematics of the Polish Academy of Science

COMPOSITIONALITY & MEANING

A unicorn drinks tea

Tea drinks a unicorn

"The meaning of an expression is a function of the meanings of its parts and of the way they are syntactically combined" [Partee, 1984]

[Brutus]]:brutus^e[stabbed]]:λo^es^e.stab(s, o)^t[Caesar]]:caesar^e

[Brutus stabbed Caesar]] = ([[stabbed]][Caesar]])[[Brutus]]

[Brutus]]:brutus^e[stabbed]]:λo^es^e.stab(s, o)^t[Caesar]]:caesar^e

[[Brutus stabbed Caesar]] = ([[stabbed]][[Caesar]])[[Brutus]] $= (\lambda os.stab(s, o) caesar) brutus$

[Brutus]]:brutus^e[stabbed]]:λo^es^e.stab(s, o)^t[Caesar]]:caesar^e

 $\llbracket Brutus stabbed Caesar \rrbracket = (\llbracket stabbed \rrbracket \llbracket Caesar \rrbracket) \llbracket Brutus \rrbracket$ $= (\lambda os.stab(s, o) caesar) brutus$ $\rightarrow_{\beta} \lambda s.stab(s, caesar) brutus$

 $\llbracket Brutus stabbed Caesar \rrbracket = (\llbracket stabbed \rrbracket \llbracket Caesar \rrbracket) \llbracket Brutus \rrbracket$ $= (\lambda os.stab(s, o) caesar) brutus$ $\rightarrow_{\beta} \lambda s.stab(s, caesar) brutus$ $\rightarrow_{\beta} stab(brutus, caesar)$

NNS, REASONING, AND COMPOSITIONALITY

a unicorn drinking tea

tea drinking a unicorn

red cube behind a blue ball

In the past years, investigation of capacity of (neural) language models to use/produce/deduce compositional rules/sentences.

In the past years, investigation of capacity of (neural) language models to use/produce/deduce compositional rules/sentences.

- Tree-structured composition in neural networks without tree-structured architectures, [Bowman et al., 2015]
- Diagnostic classifiers revealing how neural networks process hierarchical structure, [Veldhoen et al., 2016]
- Siamese recurrent networks learn first-order logic reasoning and exhibit zero-shot compositional generalization, [Mul and Zuidema, 2019]

- Analysing mathematical reasoning abilities of neural models, [Saxton et al., 2019]
- Compositionality decomposed: How do neural networks generalise?, [Hupkes et al., 2020]
- LogicInference: A New Dataset for Teaching Logical Inference to seq2seq Models, [Ontanon et al., 2022]
- Unit Testing for Concepts in Neural Networks, [Lovering and Pavlick, 2022]

S. Bowman, S. R., Manning, C. D., & Potts, C. (2015). Tree-structured composition in neural networks without tree-structured architectures. arXiv preprint arXiv:1506.04834.

- Test whether neural sequence models such as LSTMs are able to discover and implicitly use recursive compositional structures (with explicit cues).
- → Results: tree models perform significantly better than LSTMs on such tasks.
- → Classification task: what type of logical relation (out of 7 possible) between pairs of sentences.

Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019). Analysing mathematical reasoning abilities of neural models. arXiv preprint arXiv:1904.01557.

- Task suite of mathematical problems (arithmetic, algebra, probability, calculus) in English, question in English, short answer: only number, yes, no.
- → Designed to test the capacity of NNs (Transformers and Recurrent architectures) to compose mathematical concepts and generalize mathematical operations.
- → Performance varies greatly from one type of problem to another.

Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). **Compositionality decomposed: How do neural networks generalise?** Journal of Artificial Intelligence Research, 67, 757-795.

→ Set of 5 tests for NNs capacity to **compositionally generalize**:

Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). **Compositionality** decomposed: How do neural networks generalise? Journal of Artificial Intelligence Research, 67, 757-795.

- → Set of 5 tests for NNs capacity to **compositionally generalize**:
- (1) can they successfully recombine known parts and rules?
- (2) can they **extend** their predictions beyond the length they've seen in training?
- (3) do they compose in a local or in a global way?
- (4) are their predictions robust to synonym substitution?
- (5) do they favor rules or exceptions during training?

Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). **Compositionality decomposed: How do neural networks generalise?** Journal of Artificial Intelligence Research, 67, 757-795.

- → Set of 5 tests for NNs capacity to **compositionally generalize**:
- (1) can they successfully recombine known parts and rules?
- (2) can they **extend** their predictions beyond the length they've seen in training?
- (3) do they compose in a local or in a global way?
- (4) are their predictions robust to synonym substitution?
- (5) do they favor rules or exceptions during training?
- → Instantiation of the 5 tests on an artifical dataset: PCFG SET, and apply them to a recurrent NN, a convolution-based NN and a transformer.

We would like to investigate the capacity of neural networks (NNs) to learn compositional structures/rules.

- → In a minimal setting: simple corpus, where all composition comes from the structure of proofs.
- → Testing different aspects of compositionality.

Given that a model can derive: **Premisses:** "A \rightarrow B" "B \rightarrow C" **Conclusion:** "A \rightarrow C"

Then it should derive: Premisses: "A \rightarrow B" "B \rightarrow C" "C \rightarrow D" Conclusion: "A \rightarrow D" Given that a model can derive: **Premisses:** "A \rightarrow B" "B \rightarrow C" **Conclusion:** "A \rightarrow C"

Then it should derive: Premisses: "X \rightarrow Y" "Y \rightarrow Z" Conclusion: "X \rightarrow Z"

A SIMPLE CORPUS

CORPUS DESCRIPTION

Constants:
$$C = \{X_1 \dots X_n\}$$

Formulas: " $X_i \rightarrow X_j$ "

Derivation rule:

$$\frac{X_i \rightarrow X_j \qquad X_j \rightarrow X_k}{X_i \rightarrow X_k}$$

$$\{X_1 \rightarrow X_2, X_2 \rightarrow X_3, X_3 \rightarrow X_4, X_4 \rightarrow X_5\} \vdash X_1 \rightarrow X_5$$

$$\underbrace{ \begin{array}{c} \stackrel{(1)}{\underbrace{} X_1 \rightarrow X_2 \quad (2) \quad X_2 \rightarrow X_3} \\ \hline \underbrace{X_1 \rightarrow X_3 \quad (3) \quad X_3 \rightarrow X_4} \\ \hline \underbrace{X_1 \rightarrow X_4 \quad (4) \quad X_4 \rightarrow X_5} \\ \hline \end{array}$$

KNOWLEDGE BASE (KB)

Parameters of the \mathcal{KB} : # constants = 70, # premises = 82, # hypotheses = 4, 830, # valid hypotheses = 531.

Length of proof	# of proofs
0	4,299
1	82
2	75
3	63
4	60
5	51
6	54
7	41
8	42
9	35
10	28

Given a knowledge base \mathcal{KB} and a hypothesis **h**, our connectionist component is a neural network that selects the (most likely) set of formulas from \mathcal{KB} that are necessary to derive **h**.

→ Architectures: Multilayer perceptron (MLP), Recurrent neural network (RNN)

CONNECTIONNIST COMPONENT

input: X is a vector that encodes a set $\mathsf{P}=\{p_1,p_2,\ldots,p_n\}$ of all premisses and a hypothesis h

output: \hat{y} is a vector of size n such that for each $i \in [1..n]$

$$\hat{y}_i = \left\{ \begin{array}{ll} 1 & \text{if } p_i \in \pi \\ 0 & \text{otherwise} \end{array} \right.$$

Where $\pi \subset P$ and $\pi \vdash h$, and π is necessary to prove h.

$\begin{aligned} & 1. \ X = [``X_1 \to X_3" ``X_3 \to X_6" ``X_6 \to X_4" ``X_2 \to X_7" ``X_2 \to X_4" ``X_1 \to X_4"] \\ & \hat{y} = [1 \ 1 \ 1 \ 0 \ 0] \end{aligned}$

1. $X = ["X_1 \rightarrow X_3" "X_3 \rightarrow X_6" "X_6 \rightarrow X_4" "X_2 \rightarrow X_7" "X_2 \rightarrow X_4" "X_1 \rightarrow X_4"]$ $\hat{y} = [1 \ 1 \ 1 \ 0 \ 0]$

2. $X = [``X_1 \rightarrow X_3" ``X_3 \rightarrow X_6" ``X_6 \rightarrow X_4" ``X_2 \rightarrow X_7" ``X_2 \rightarrow X_4" ``X_1 \rightarrow X_7"]$ $\hat{y} = [0 \ 0 \ 0 \ 0 \ 0]$

EXPERIMENTS AND RESULTS

Length of proofs	Total data	Train data	Test data
0	4299	3224	1075
1	82	62	20
2	75	56	19
3	63	47	16
4	60	45	15
5	51	38	13
6	54	40	14
7	41	31	10
8	42	32	10
9	35	26	9
10	28	21	7

Table: 75/25% split of the \mathcal{KB} , stratified by length of proofs

Length of proofs	MLP test	RNN test
0	99.91%	99.81%
1	40.00%	50.00%
2	57.89%	63.16%
3	68.75%	75.00%
4	93.33%	93.33%
5	100.00%	100.00%
6	100.00%	100.00%
7	100.00%	100.00%
8	100.00%	90.00%
9	100.00%	100.00%
10	100.00%	100.00%

proofs	MLP test	RNN test	hypothesis	# of sub-proofs	# of formulas
0	99.91%	99.81%	3224	0	0
1	40.00%	50.00%	62	62	62
2	57.89%	63.16 %	56	138	194
3	68.75 %	75.00%	47	202	362
4	93.33%	93.33%	45	331	695
5	100.00%	100.00%	38	416	1017
6	100.00%	100.00%	40	640	1756
7	100.00%	100.00%	31	645	2002
8	100.00%	90.00%	32	839	2869
9	100.00%	100.00%	26	845	3178
10	100.00%	100.00%	21	827	3384

Let y be the expected output vector for our NN, \hat{y} the actual output vector:

$$y = [1 \ 1 \ 0 \ 0 \ 1]$$
$$\hat{y} = [0.68 \ 0.98 \ 0.33 \ 0.12 \ 0.46]$$
$$\hat{y} \simeq [1 \ 1 \ 0 \ 0 \ 0]$$

Let y be the expected output vector for our NN, \hat{y} the actual output vector:

$$y = [1 \ 1 \ 0 \ 0 \ 1]$$
$$\hat{y} = [0.68 \ 0.98 \ 0.33 \ 0.12 \ 0.46]$$
$$\hat{y} \simeq [1 \ 1 \ 0 \ 0 \ 0]$$

 $H(y,\hat{y})=1$

HAMMING DISTANCES - INITIAL EXPERIMENT

Figure: Average Hamming distances between the expected output and the actual output for the initial experiment

We explored compositionality tests in the context of our simple corpus.

- → Variations in the number of premisses needed to prove the conclusion:
 - Train on short proofs, test on long proofs
 - Train on long proofs, test on short proofs
- → Permutations in the order of the constants

The model is trained on proofs from length n_1 to n_2 ($n_1 < n_2$). Then, how does it perform when confronted to valid proofs, including proofs of length $n < n_1$ or $n > n_2$?

Train data	MLP test	RNN test	Train data	MLP test	RNN test
0-9	100.0%	100.0%	1-10	44.1%	48.08%
0-8	92.06%	93.65%	2-10	40.95%	41.61%
0-7	73.33%	82.86%	3-10	37.5%	40.13%
0-6	45.89%	65.07%	4-10	7.37%	11.06%
0-5	17.0%	46.0%	5-10	1.81%	2.16%

(b) Unseen shorter proofs

Train data	MLP test	RNN test	Train data	MLP test	RNN test
0-9	100.0%	100.0%	1-10	44.1%	48.08%
0-8	92.06%	93.65%	2-10	40.95%	41.61%
0-7	73.33%	82.86%	3-10	37.5%	40.13%
0-6	45.89%	65.07%	4-10	7.37%	11.06%
0-5	17.0%	46.0%	5-10	1.81%	2.16%

(b) Unseen shorter proofs

→ The less data is used for train, the less the model learns.

Train data	MLP test	RNN test	Train data	MLP test	RNN test
0-9	100.0%	100.0%	1-10	44.1%	48.08%
0-8	92.06%	93.65%	2-10	40.95%	41.61%
0-7	73.33%	82.86%	3-10	37.5%	40.13%
0-6	45.89%	65.07%	4-10	7.37%	11.06%
0-5	17.0%	46.0%	5-10	1.81%	2.16%

(b) Unseen shorter proofs

- → The less data is used for train, the less the model learns.
- → The RNN has better accuracy than the MLP.

Train data	MLP test	RNN test	Train data	MLP test	RNN test
0-9	100.0%	100.0%	1-10	44.1%	48.08%
0-8	92.06%	93.65%	2-10	40.95%	41.61%
0-7	73.33%	82.86%	3-10	37.5%	40.13%
0-6	45.89%	65.07%	4-10	7.37%	11.06%
0-5	17.0%	46.0%	5-10	1.81%	2.16%

(b) Unseen shorter proofs

- → The less data is used for train, the less the model learns.
- → The RNN has better accuracy than the MLP.

If the model has been trained on a given \mathcal{KB} , then a permutation function $\sigma : \mathcal{C} \to \mathcal{C}$ has been applied to \mathcal{KB} to obtain \mathcal{KB}' , how will the model behave with inputs from \mathcal{KB}' ?

KNOWLEDGE BASE (KB)

Permuted Knowledge Base (KB')

PERMUTATIONS OF CONSTANTS

Length of	MLP	RNN
proofs	test	test
0	17.84%	66.43%
1	0.00%	0.00%
2	0.00%	1.33%
3	0.00%	0.00%
4	0.00%	0.00%
5	0.00%	0.00%
6	0.00%	0.00%
7	0.00%	0.00%
8	0.00%	0.00%
9	0.00%	0.00%
10	0.00%	0.00%

PERMUTATIONS OF CONSTANTS

Length of	MLP	RNN
proofs	test	test
0	17.84%	66.43%
1	0.00%	0.00%
2	0.00%	1.33%
3	0.00%	0.00%
4	0.00%	0.00%
5	0.00%	0.00%
6	0.00%	0.00%
7	0.00%	0.00%
8	0.00%	0.00%
9	0.00%	0.00%
10	0.00%	0.00%

Next test: how does the model behave w.r.t permutation of constants once it has been exposed to permuted constants?

CONCLUSION

NNs & compositionality:

- → NNs pick up some structure from data: some amount of generalization in the variations in proof length compositionality tests, sub-proofs play a role in learning;
- → Limited generalization: unseen length experiment, high sensitivity to the order of constants, ≫ overall structure of the KB.

NNs & compositionality:

- NNs pick up some structure from data: some amount of generalization in the variations in proof length compositionality tests, sub-proofs play a role in learning;
- → Limited generalization: unseen length experiment, high sensitivity to the order of constants, ≫ overall structure of the KB.

To be investigated next:

- → what is the representation of the data that the NN builds in training?
- → comparative studies through different dataset sizes, data encodings, other NN architectures.

REFERENCES I

- Bowman, S. R., Manning, C. D., and Potts, C. (2015). Tree-structured composition in neural networks without tree-structured architectures. arXiv preprint arXiv:1506.04834.
- Guzmán, M. V., Boritchev, M., Szymanik, J., and Malicki, M. (2022). Compositionality in a simple corpus. In Journées Jointes des Groupements de RechercheLinguistique Informatique, Formelle et de Terrain(LIFT) et Traitement Automatique des Langues(TAL), pages 55–63.
- Hupkes, D., Dankers, V., Mul, M., and Bruni, E. (2020). Compositionality decomposed: how do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795.
- Lovering, C. and Pavlick, E. (2022). Unit testing for concepts in neural networks. arXiv preprint arXiv:2208.10244.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In Approaches to natural language, pages 221–242. Springer.

REFERENCES II

- Mul, M. and Zuidema, W. (2019). Siamese recurrent networks learn first-order logic reasoning and exhibit zero-shot compositional generalization. arXiv preprint arXiv:1906.00180.
- Ontanon, S., Ainslie, J., Cvicek, V., and Fisher, Z. (2022). Logicinference: A new datasaet for teaching logical inference to seq2seq models. In ICLR2022 Workshop on the Elements of Reasoning: Objects, Structure and Causality.
- Partee, B. (1984). Compositionality. Varieties of formal semantics, 3:281–311.
- Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. (2019). Analysing mathematical reasoning abilities of neural models. arXiv preprint arXiv:1904.01557.

Veldhoen, S., Hupkes, D., and Zuidema, W. H. (2016). Diagnostic classifiers revealing how neural networks process hierarchical structure. In CoCo@ NIPS.

(a) Minimal length of unseen proof: 0

(b) Maximal length of unseen proof: 10

Figure: Average Hamming distances between the expected output and the actual output for the unseen length experiment, MLP

(a) Minimal length of unseen proof: 0

(b) Maximal length of unseen proof: 10

Figure: Average Hamming distances between the expected output and the actual output for the unseen length experiment, RNN

Each formula from input X is encoded in a vector of dimension 2n (where n is the the size of the set C) as a one-hot fashion.

Example: let $\mathcal{C}=\{X_1,\,X_2,\,X_3,\,X_4,\,X_5\},$ then the formula $X_2\to X_5$ is encoded as

 $[0\ 1\ 0\ 0\ 0\ |\ 0\ 0\ 0\ 1]$

where the first n digits represent X_2 and the constant X_5 is encoded within the last n bits from the vector.

Architecture	MLP	RNN
Optimization algorithm	Adamax algorithm,	same
	default learning rate 0.001	
# hidden layers	1	2
# neurons in each layer	2500	200
Function in hidden layers	hyperbolic tangent function (tanh)	tanh
Function in the output layer	sigmoid function	sigmoid function
# epochs	between 200 and 300 epochs	same
batch size	20	20

Generate image blue ball behind a red cube

red cube behind a blue ball

