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COMPOSITIONALITY & MEANING



SENTENCE-LEVEL COMPOSITIONALITY & USAGE

A unicorn drinks tea
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SENTENCE-LEVEL COMPOSITIONALITY & USAGE?

Tea drinks a unicorn
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COMPOSITIONALITY AND MEANING, A DEFINITION

“The meaning of an expression is a function of the meanings of its
parts and of the way they are syntactically combined” [Partee, 1984]
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[MONTAGUE, 1973], COMPOSITIONAL SEMANTICS
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= (λos.stab(s,o) caesar) brutus
→β λs.stab(s, caesar) brutus
→β stab(brutus, caesar)
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NNS, REASONING, AND COMPOSITIONALITY
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NEURAL NETWORKS AND COMPOSITIONALITY

In the past years, investigation of capacity of (neural) language
models to use/produce/deduce compositional rules/sentences.

• Tree-structured composition in neural networks without
tree-structured architectures, [Bowman et al., 2015]

• Diagnostic classifiers revealing how neural networks process
hierarchical structure, [Veldhoen et al., 2016]

• Siamese recurrent networks learn first-order logic reasoning
and exhibit zero-shot compositional generalization,
[Mul and Zuidema, 2019]
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NEURAL NETWORKS AND COMPOSITIONALITY

• Analysing mathematical reasoning abilities of neural models,
[Saxton et al., 2019]

• Compositionality decomposed: How do neural networks
generalise?, [Hupkes et al., 2020]

• LogicInference: A New Dataset for Teaching Logical Inference to
seq2seq Models, [Ontanon et al., 2022]

• Unit Testing for Concepts in Neural Networks,
[Lovering and Pavlick, 2022]
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S. Bowman, S. R., Manning, C. D., & Potts, C. (2015). Tree-structured
composition in neural networks without tree-structured

architectures. arXiv preprint arXiv:1506.04834.

Ô Test whether neural sequence models such as LSTMs are able to
discover and implicitly use recursive compositional structures
(with explicit cues).

Ô Results: tree models perform significantly better than LSTMs on
such tasks.

Ô Classification task: what type of logical relation (out of 7
possible) between pairs of sentences.
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Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019). Analysing
mathematical reasoning abilities of neural models. arXiv preprint

arXiv:1904.01557.

Ô Task suite of mathematical problems (arithmetic, algebra,
probability, calculus) in English, question in English, short
answer: only number, yes, no.

Ô Designed to test the capacity of NNs (Transformers and
Recurrent architectures) to compose mathematical concepts
and generalize mathematical operations.

Ô Performance varies greatly from one type of problem to another.
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Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality
decomposed: How do neural networks generalise? Journal of

Artificial Intelligence Research, 67, 757-795.

Ô Set of 5 tests for NNs capacity to compositionally generalize:

(1) can they successfully recombine known parts and rules?
(2) can they extend their predictions beyond the length they’ve

seen in training?
(3) do they compose in a local or in a global way?
(4) are their predictions robust to synonym substitution?
(5) do they favor rules or exceptions during training?

Ô Instantiation of the 5 tests on an artifical dataset: PCFG SET, and
apply them to a recurrent NN, a convolution-based NN and a
transformer.
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IN OUR WORK [GUZMÁN ET AL., 2022]

We would like to investigate the capacity of neural networks (NNs) to
learn compositional structures/rules.

Ô In a minimal setting: simple corpus, where all composition
comes from the structure of proofs.

Ô Testing different aspects of compositionality.
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COMPOSITIONALITY, SIMPLE CORPUS, AND NNS

Given that a model can derive:
Premisses: “A → B” “B → C”
Conclusion: “A → C”

Then it should derive:
Premisses: “A → B” “B → C” “C → D”
Conclusion: “A → D”
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COMPOSITIONALITY, SIMPLE CORPUS, AND NNS

Given that a model can derive:
Premisses: “A → B” “B → C”
Conclusion: “A → C”

Then it should derive:
Premisses: “X → Y” “Y → Z”
Conclusion: “X → Z”
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A SIMPLE CORPUS



CORPUS DESCRIPTION

Constants: C = {X1 . . . Xn}

Formulas: “Xi → Xj”

Derivation rule:

Xi → Xj Xj → Xk
Xi → Xk
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EXAMPLE

{X1 → X2, X2 → X3, X3 → X4, X4 → X5} ⊢ X1 → X5

(1) X1 → X2 (2) X2 → X3
X1 → X3 (3) X3 → X4

X1 → X4 (4) X4 → X5
X1 → X5
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KNOWLEDGE BASE (KB)
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KNOWLEDGE BASE (KB)

Parameters of the KB: # constants = 70, # premises = 82,
# hypotheses = 4, 830, # valid hypotheses = 531.

Length of proof # of proofs
0 4,299
1 82
2 75
3 63
4 60
5 51
6 54
7 41
8 42
9 35
10 28
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CONNECTIONNIST COMPONENT

Given a knowledge base KB and a hypothesis h, our connectionist
component is a neural network that selects the (most likely) set of
formulas from KB that are necessary to derive h.

Ô Architectures: Multilayer perceptron (MLP), Recurrent neural
network (RNN)
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CONNECTIONNIST COMPONENT

input: X is a vector that encodes a set P = {p1,p2, . . . ,pn} of all
premisses and a hypothesis h
output: ŷ is a vector of size n such that for each i ∈ [1..n]

ŷi =
{

1 if pi ∈ π

0 otherwise

Where π ⊂ P and π ⊢ h, and π is necessary to prove h.
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EXAMPLE

1. X = [“X1 → X3” “X3 → X6” “X6 → X4” “X2 → X7” “X2 → X4” “X1 → X4”]
ŷ = [1 1 1 0 0]

2. X = [“X1 → X3” “X3 → X6” “X6 → X4” “X2 → X7” “X2 → X4” “X1 → X7”]
ŷ = [0 0 0 0 0]
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EXPERIMENTS AND RESULTS



INITIAL EXPERIMENT – DATA DISTRIBUTION

Length of proofs Total data Train data Test data
0 4299 3224 1075
1 82 62 20
2 75 56 19
3 63 47 16
4 60 45 15
5 51 38 13
6 54 40 14
7 41 31 10
8 42 32 10
9 35 26 9
10 28 21 7

Table: 75/25% split of the KB, stratified by length of proofs
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INITIAL EXPERIMENT – ACCURACIES

Length of proofs MLP test RNN test
0 99.91% 99.81%
1 40.00% 50.00%
2 57.89% 63.16%
3 68.75% 75.00%
4 93.33% 93.33%
5 100.00% 100.00%
6 100.00% 100.00%
7 100.00% 100.00%
8 100.00% 90.00%
9 100.00% 100.00%
10 100.00% 100.00%

29 / 41



INITIAL EXPERIMENT – ACCURACIES

|proofs| MLP test RNN test hypothesis # of sub-proofs # of formulas
0 99.91% 99.81% 3224 0 0
1 40.00% 50.00% 62 62 62
2 57.89% 63.16% 56 138 194
3 68.75% 75.00% 47 202 362
4 93.33% 93.33% 45 331 695
5 100.00% 100.00% 38 416 1017
6 100.00% 100.00% 40 640 1756
7 100.00% 100.00% 31 645 2002
8 100.00% 90.00% 32 839 2869
9 100.00% 100.00% 26 845 3178
10 100.00% 100.00% 21 827 3384
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HAMMING DISTANCES

Let y be the expected output vector for our NN, ŷ the actual output
vector:

y = [1 1 0 0 1]
ŷ = [0.68 0.98 0.33 0.12 0.46]
ŷ ≃ [1 1 0 0 0]

H(y, ŷ) = 1
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HAMMING DISTANCES – INITIAL EXPERIMENT

(a) MLP (b) RNN

Figure: Average Hamming distances between the expected output and the
actual output for the initial experiment
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COMPOSITIONALITY TESTS

We explored compositionality tests in the context of our simple
corpus.

Ô Variations in the number of premisses needed to prove the
conclusion:
• Train on short proofs, test on long proofs
• Train on long proofs, test on short proofs

Ô Permutations in the order of the constants
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VARIATIONS IN THE NUMBER OF PREMISSES

The model is trained on proofs from length n1 to n2 (n1 < n2). Then,
how does it perform when confronted to valid proofs, including
proofs of length n < n1 or n > n2?
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VARIATIONS IN THE NUMBER OF PREMISSES – RESULTS

Train data MLP test RNN test
0-9 100.0% 100.0%
0-8 92.06% 93.65%
0-7 73.33% 82.86%
0-6 45.89% 65.07%
0-5 17.0% 46.0%

(a) Unseen longer proofs

Train data MLP test RNN test
1-10 44.1% 48.08%
2-10 40.95% 41.61%
3-10 37.5% 40.13%
4-10 7.37% 11.06%
5-10 1.81% 2.16%

(b) Unseen shorter proofs

Ô The less data is used for train, the less the model learns.
Ô The RNN has better accuracy than the MLP.
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PERMUTATIONS OF CONSTANTS

If the model has been trained on a given KB, then a permutation
function σ : C → C has been applied to KB to obtain KB’, how will
the model behave with inputs from KB’?
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KNOWLEDGE BASE (KB)
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PERMUTED KNOWLEDGE BASE (KB’)
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PERMUTATIONS OF CONSTANTS

Length of MLP RNN
proofs test test

0 17.84% 66.43%
1 0.00% 0.00%
2 0.00% 1.33%
3 0.00% 0.00%
4 0.00% 0.00%
5 0.00% 0.00%
6 0.00% 0.00%
7 0.00% 0.00%
8 0.00% 0.00%
9 0.00% 0.00%
10 0.00% 0.00%

Ô Next test: how does the model behave w.r.t permutation of
constants once it has been exposed to permuted constants?
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CONCLUSION



CONCLUSION & FUTURE WORK

NNs & compositionality:

Ô NNs pick up some structure from data: some amount of
generalization in the variations in proof length compositionality
tests, sub-proofs play a role in learning;

Ô Limited generalization: unseen length experiment, high
sensitivity to the order of constants, ≫ overall structure of
the KB.

To be investigated next:

Ô what is the representation of the data that the NN builds in
training?

Ô comparative studies through different dataset sizes, data
encodings, other NN architectures.
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(a) Minimal length of unseen proof: 0 (b) Maximal length of unseen proof: 10

Figure: Average Hamming distances between the expected output and the
actual output for the unseen length experiment, MLP
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(a) Minimal length of unseen proof: 0 (b) Maximal length of unseen proof: 10

Figure: Average Hamming distances between the expected output and the
actual output for the unseen length experiment, RNN
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DATA ENCODING

Each formula from input X is encoded in a vector of dimension 2n
(where n is the the size of the set C) as a one-hot fashion.

Example: let C = {X1, X2, X3, X4, X5}, then the formula X2 → X5 is
encoded as

[0 1 0 0 0 | 0 0 0 0 1]

where the first n digits represent X2 and the constant X5 is encoded
within the last n bits from the vector.
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NEURAL NETWORKS SETUP

Architecture MLP RNN
Optimization algorithm Adamax algorithm, same

default learning rate 0.001
# hidden layers 1 2

# neurons in each layer 2500 200
Function in hidden layers hyperbolic tangent function (tanh) tanh

Function in the output layer sigmoid function sigmoid function
# epochs between 200 and 300 epochs same
batch size 20 20
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