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In NLP, there are bigger and more powerful
language models (LMs) all the time.

Language models are few-shot learners
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And researchers are racing to evaluate their
strengths and limitations.
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So what currently
holds the
state-of-the-art in
grammar learning?
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Humans are data-efficient language learners.

30B 200B

1B
100M
. o O

10 y.o. ELMo BERT RoOBERTa GPT-3
Human (2018) (2018) (2019) (2020)




Roadmap

4 N\
1. The Argument

Why study language
models as models of
human learners? What
kinds of questions can
they address?

. J

(

2. The Learner

Training LMs in more
plausible learning
environments,
without major
advantages over
humans.

-
3. A Controlled

Experiment

A proof-of-concept:
Language models
unlock new modes of
testing learnability
hypotheses




Part 1: The Argument

4 N\
1. The Argument

Why study language
models as models of
human learners? What
kinds of questions can
they address?
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How do we make LMs into plausible cognitive models?
Why study LMs as models of human learners?

What kinds of questions can they address?

What Artificial Neural Networks Can Tell Us About
Human Language Acquisition®

Alex Warstadt, Samuel R. Bowman

August 18, 2022
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Language Deprivation Experiments
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Three reasons to
study neural

networks instead of
humans:



1. Ethics



1. Ethics
2. Expense



1. Ethics

2. Expense

3. Experimental
paradigms



As with any scientific
model, there are

obvious limitations
with LMs.




Relevance
to humans

Differences
from
humans



Debates In language
acquisition often center

around the sufficient
conditions for
human-learnability.



Suppose the model SUCCEEDS Likelihood that humans

given some experimental show same result
manipulation. How likely are A
humans also to succeed? R -
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< .
Model is at a Humanis at a
great advantage great advantage




Suppose the model FAILS Likelihood that humans

given some experimental show same result
manipulation. How likely are A
humans also to succeed? — =~~~ - R -
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Assuming we want results that Likelihood that humans

will generalize to humans, we show same result
should aim for results like this: A )
Model " Model
FAILS Y|,/ SUCCEEDS
D .
Model is at a Humanis at a
great advantage great advantage
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A recipe for relevant model learners:

24



A recipe for relevant model learners:

e Increase the relevance of positive by results by
reducing the advantages that models have over
humans.
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A recipe for relevant model learners:

e Increase the relevance of positive by results by
reducing the advantages that models have over
humans.

e [ncrease the chance of positive results by providing
models with advantages that humans have.
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A recipe for relevant model learners:

e Increase the relevance of positive by results by
reducing the advantages that models have over

humans.

e [ncrease the chance of positive results by providing
models with advantages that humans have.

In other words, the best model learners will be ones whose
environments and innate abilities are as rich as possible without
being richer than those of humans.
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Advantages ANNs Have

Data quantity

Data domain Orthography
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Advantages ANNs Have

Data quantity
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Human vs. model linguistic input «# of word tokens)
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Part 2: The Learner

(

2. The Learner

Training LMs in more
plausible learning
environments,
without major
advantages over
humans.
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Five Sets of Probing Methods

Relative Performance
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Five Sets of Probing Methods

1.0 A

Classifier Probing
(Edge Probing)
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Edge Probing)
{ ---- BLiMP
0.6 ~—
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Performance

BLiMP: The Benchmark of Linguistic Minimal Pairs for English

Alex Warstadt', Alicia Parrish', Haokun Liu®, Anhad Mohananey?,
Wei Peng2 Sheng-Fu Wang!, Samuel R Bowman'2?
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Minimal Pairs

A pair of two nearly identical sentences which differ in grammatical acceptability.

[Betsy is eager to sleep. ] /
[Betsy is easy to sleep. ] X
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BLiMP Categories

[Morpholog) 4 Syntax A /Semantics\

Anaphor agr. Argument structure e NPIs

[ J

e Determiner-noun agr. Binding e Quantifiers
e lrregular forms Control/raising

e Subj-verb agr Ellipsis

Filler-gap (wh) deps.

Island constraints / \ /

o

- v




Data Sample

Phenomenon

Anaphor agr.

Det.-noun agr.

Subject-verb agr.

Filler-gap

Island effects

Acceptable example

Many girls insulted themselves.

Rachelle had bought that chair.

These casseroles disqust Kayla.

Brett knew what many waiters find.

Which bikes is John fixing?

Unacceptable example

Many girls insulted herself.

Rachelle had bought that chairs.

These casseroles disqusts Kayla.

Brett knew that many waiters find.

Which is John fixing bikes?
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BLIMP
Learning
Curves
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BLIMP:
Human vs. Human-scale model
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UPCOMING Shared task @ CMCL/CoNLL 2023

BabyLM Challenge

Sample-efficient pretraining on a developmentally plausible corpus

Approximate Timeline:

December 2022: Training data released

February 2023: Shared evaluation pipeline published

June 2023: Submissions for presentation at CMCL due
September 2023: CMCL, Submissions for presentation at CoNLL
November 2023: CoNLL



Part 3: A Controlled Experiment

( N\
3. A Controlled
Experiment

A proof-of-concept:
Language models
unlock new modes of
testing learnability
hypotheses




Testing the Poverty of the Stimulus:

Controlled experiments at the scale of human
language learning

with Yian Zhang, Haau-Sing Li, and Samuel R. Bowman




There's a long history of debate about
the role of innate bias in the acquisition
of hierarchical syntactic rules in favor
of alternative linear rules.

Chomsky (1965, 1971); Crain & Nakayama (1987); Lewis & Elman (2001);

Pullum & Scholz (2002); Legate & Yang (2002); Reali & Christiansen (2005); Perfors,
Tenenbaum, & Regier (2011); Berwick et al. (2011); Hsu, Chater, & Vitanyi (2013);
McCoy, Frank, & Linzen (2018, 2020); Warstadt & Bowman (2020)



A theory that attributes possession of
certain linguistic universals to a language-
acquisition system [...] implies that only
certain kinds of symbolic systems can be
acquired [....] Specifically, grammatical
transformations are necessarily
"structure-dependent" [i.e., hierarchical]
[....] Itis impossible, however, [for the
language-acquisition system to learn] a
transformation such a simple operation as

reflection of an arbitrary string. /

(Chomsky, 1965)



Subject
Auxiliary
Inversion

Example: McCoy et al. (2020)

( The zebra does chuckle. )
( Does the zebra chuckle? )

46



MOVE-FIRST: Move
the linearly first
auxiliary to the front
of the sentence.

does the zebra dees chuckle
A _
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MOVE-FIRST: Move
the linearly first
auxiliary to the front
of the sentence.

does the zebra dees chuckle
A _

MOVE-MAIN: Move
the main verb’s
auxiliary to the front
of the sentence.

does

the =zebra
dees chuckle

48



( The man who has gone has seen the cat. )

49



C The man who has gone has seen the cat. )

MOVE-FIRST: Move
the linearly first
auxiliary to the front
of the sentence.

50



( The man who has gone has seen the cat. )

MOVE-FIRST: Move
the linearly first
auxiliary to the front
of the sentence.

—

Has the man who gone has seen the catD

51



C The man who has gone has seen the cat. )

MOVE-MAIN: Move
the main verb’s
auxiliary to the front
of the sentence.

52



( The man who has gone has seen the cat. )

MOVE-MAIN: Move
the main verb’s
auxiliary to the front
of the sentence.

has

Y

the

man

seen the cat
who

has gone

53



The Poverty of the Stimulus Argument relies
on quantifying “sufficient evidence”:

“Surely, if children hear enough sentences like those [below], then
they could reject the [move-first] hypothesis. But if such evidence is
virtually absent from the linguistic data, one cannot but conclude
that children do not entertain the [move-first] hypothesis, because

the knowledge of structure dependency is innate.”
(Legate & Yang, 2001)

e.g., Has the man who has gone seen the cat?
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The INDIRECT Evidence Hypothesis:

Indirect evidence may be sufficient for a learner
without hierarchical bias to eliminate move-first.

55



Proponents of Indirect Evidence

“While a child may not receive direct evidence about the correctness
of a particular hierarchical phrase structure rule..., there is vast
indirect evidence for the general superiority of syntax with that
structure throughout language. A learner who adopts a hierarchical
phrase structure framework for describing the syntax of English will
arrive at a much simpler, more explanatory account of her

observations than a learner who adopts a linear framework.”
(Perfors et al., 2011)



Syntactic filterin
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Syntactic filtering //sentence/

Contains
Contains SA
inversion?

Training data: 1B words
from books & Wikipedia

Yes

question
No

e Percentfiltered: 1.7%
Accuracy: 98%

e Recall (% of direct
evidence removed): ——No
99% |

[ Don't filter ] [ Filter ]

Contains
multiple
auxiliaries?

Yes

Yesj

Contains
embedded
clause?




Distribution of
direct evidence
(by domain)

61.9

36.9

(a) Books (all sentences)

(c) Books (SAI U Q)
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(b) Wikipedia (all sentences)
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Filtered Condition Unfiltered Condition
Models (control)

24 RoBERTa models

pretrained from
scratch.

e 2 main conditions {[

e 4sijzes

e 3runs (failed
runs discarded)
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Results: General
acceptability
judgments on
BLiMP

Question: Did the
removal of direct
evidence have effects on
unrelated phenomena?



Results: General
acceptability
judgments on
BLiMP

Question: Did the
removal of direct
evidence have effects on
unrelated phenomena?

Answer: No

Accuracy
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Results: General
acceptability
judgments on
BLiMP

This result holds across
all phenomena in BLiMP.

Binding Irregular Forms NPI Licensing
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3 Written
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Spoken
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Tamara came here. Even Brad has also come here.
*Tamara come here.| *Even Brad has ever come here.

It's herself who Leslie wasn't
impressing.
*It's herself who wasn't impressing
lie.

0.0
Control and Raising Anaphor Agreement Quantifiers
10
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206
e
3
<04
0.2
Michelle's bosses were certain to clash.
*Michelle's bosses were enjoyable to Jane had upset herself, There Isn't a bank existing
00 clash. #Jane had upset themselves *“There isn't each bank existing.
Determiner-Noun Agreement Subject-Verb Agreement Island Effects
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206 4 .
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H s
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02

Marie fixed this blue dish. Every cactus has fallen, Who has Mark revealed he will see?
0.0 |*Marie fixed these blue dish. *Every cactus have fallen *Who has Mark revealed who will see?
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Results: Subject
Aux Inversion

Question: Did the
removal of direct
evidence affect learning
of the target
phenomenon?



Results: Subject
Aux Inversion

Question: Did the
removal of direct
evidence affect learning
of the target
phenomenon?

Answer: Yes, in the
written domain.

Accuracy
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Results: Subject
Aux Inversion
(fine-grained)

Question: Did the
removal of direct
evidence differentially
affect Only Move-Main
examples?



Move-First or Move-Main C

Results: Subject !
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snacking on since 2 pm?
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Qu estion: Did the Pretraining volume (# of words)
removal of direct Only Move-Main

evidence differentially
affect Only Move-Main
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Has every book he has ever recommended sold poorly?

Answe r: Yes 0.0 |*Has every book he ever recommended has sold poorly?|
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Results: Subject
Aux Inversion
(BEST CASE)

Question: Is indirect
evidence sufficient to
acquire the hierarchical
rule?



Results: Subject
Aux Inversion
(BEST CASE)
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Results: Subject Aux Inversion (BEST CASE)

This result holds across all test cases in the written domain.
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Takeaways

The results support the indirect evidence hypothesis, but with
important caveats.

e How reproducible is the best model’s success?
e How important are small amounts of direct evidence that

passed through the filter?
e Can models succeed with the same data-volume limitations

as humans?



Discussion: What does indirect evidence for
hierarchical structure look like?

1. Classic constituency tests
Fragment answers
Who has seen the cat? [The man who was here this afternoon]

Coordination
John and [the man who was here this afternoon] are friends.

Pronominalization
[The man who was here this afternoon] left. He saw the cat.



Discussion: What does indirect evidence for
hierarchical structure look like?

2. Other hierarchical rules

Subject Verb Agreement
[The man who saw the cats] is here.

Passivization
| greeted [the man who saw the cat.] — [The man who saw the cat] was greeted by me.



Conclusion




Computational model learners allow us to:

e Make causal inferences about the effects of the
environment on language learning.

e Conduct controlled experiments on the scale of human
language learning.



BUT we are still far from having
developmentally plausible learners.

Why are humans more data efficient than LMs?



BUT we are still far from having
developmentally plausible learners.

Why are humans more data efficient than LMs?

Multimodal input Interactive learning




Open questions

e How do we quantify indirect evidence, and locate relevant
indirect evidence in the input?

e Doesindirect evidence drive typological tendencies across
the world’s languages?

e How dowe compare human and model developmental
trajectories?

e How do we optimize LM training at small scales?

e How do we incorporate interactive learning signals into LM
training?



Thank you!

TALEP Marseille for hosting me, especially Mitja Nikolaus, Abdellah
Fourtassi, Carlos Ramisch, and Sylvie Ros!

Collaborators: Sam Bowman, Amanpreet Singh, Alicia Parrish, Yian Zhang,
Haokun Liu, Haau-Sing Li, Sheng-Fu Wang, Anhad Mohananey, Wei Peng.

Audiences who helped improve previous versions of this talk: NYU
Text-as-Data, Stanford Language & Cognition Lab, CoLala (UC Berkeley),
UT Austin, ETH Zurich, ENS Paris, IST Unbabel Lisbon,

This work was funded in part by the NSF.
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