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(M)LMs already align with human brain recordings
to an impressive degree
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Gauthier and Levy 2019 Toneva et al. 2020 Goldstein et al. 2022



Challenge for neural networks for NLP: long-term

dependencies
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Vary the context length and observe how alignment
with fMRI recordings changes
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Vary the context length and observe how alignment
with fMRI recordings changes
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What are the reasons for this alignment?

a priori locations
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Today: evidence from 3 perturbation case studies

1. Alignment due to more than next-word prediction & word-level
semantics

[Merlin & Toneva, 2022 arXiv soon]

2. Joint processing of linguistic properties
[Oota, Gupta, and Toneva 2022 arXiv soon]

3. Training to summarize narratives improves brain alignment [aw &
Toneva, 2022 In Submission]
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1. Alignment due to more than next-word prediction & word-level
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[Merlin & Toneva, 2022 arXiv https://arxiv.org/abs/2212.00596]

2. Joint processing of linguistic properties
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3. Training to summarize narratives improves brain alignment [aw &
Toneva, ICLR 2023 https://arxiv.org/abs/2212.10898]
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Case study 1

e Next-word prediction performance correlates with brain alignment [Schrimpf et al. 2021,
Goldstein et al. 2022]

e Necessary or simply sufficient?

fMRI Harry Potter Dataset
[Wehbe et al. 2014]
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https://arxiv.org/abs/2212.00596

Perturbations
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Next-word prediction capabilities affected as

expected
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Voxel-wise brain alignment

A) Baseline B) Stimulus-tuned

D) Baseline scrambled
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Pearson correlation FDR corrected for multiple comparisons



Stimulus-tuning IMproves brain alignment across
all language regions
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Combining perturbations reveals a divergence in
trends for LM performance and brain alignment
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Contrast to control for word-level semantics and
next-word prediction performance
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Alignment with Angular Gyrus and IFG due to more
than word-level semantics and next-word prediction
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Today: evidence from 3 perturbation case studies

1. Alignment due to more than next-word prediction & word-level

semantics
[Merlin & Toneva, 2022 arXiv https://arxiv.org/abs/2212.00596]

2. Joint processing of linguistic properties
[Oota, Gupta, and Toneva 2022 arXiv https://arxiv.org/abs/2212.08094]

3. Training to summarize narratives improves brain alignment [aw &
Toneva, ICLR 2023 https://arxiv.org/abs/2212.10898]
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Case study 2

e Best brain alignment observed with middle layers of LMs [Jain and Huth
2018, Toneva and Wehbe 2019, Caucheteux and King 2020]

e Thought to be because of high-level information equally-distant from
word-level input

e But BERTology tells us that middle layers best for syntactic
processing [Jawahar et al. 2019, Rogers et al. 2020]

What linguistic properties underlie brain alignment,
across all layers but also specifically in middle layers?

Joint processing of linguistic properties in brains and language models,
Reddy, Gupta, and Toneva 2022 arXiv https://arxiv.org/abs/2212.08094

Subba Reddy Oota


https://arxiv.org/abs/2212.08094

Investigating effect of surface, syntactic, and
semantic linguistic properties

Layer| SentLen WC TreeDepth  TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
(Surface) (Surface) (Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)
1 93.9 (2.0) 24.9 (24.8) 35.9(6.1) 63.6 (9.0) 50.3 (0.3) 82.2(18.4) 77.6 (10.2) 76.7 (26.3) 49.9 (-0.1) 53.9(3.9)
2 95.9 (3.4) 65.0 (64.8) 40.6 (11.3) 71.3 (16.1) 55.8 (5.8) 85.9(23.5) 82.5(15.3) 80.6 (17.1) 53.8 (4.4) 58.5(8.5)
3 96.2 (3.9) 66.5 (66.0) 39.7 (10.4) 71.5 (18.5) 64.9 (14.9) 86.6 (23.8) 82.0 (14.6) 80.3 (16.6) 55.8 (5.9) 59.3 (9.3)
4 94.2 (2.3) 69.8 (69.6) 39.4(10.8) 71.3(18.3) 74.4 (24.5) 87.6 (25.2) 81.9 (15.0) 81.4(19.1) 59.0 (8.5) 58.1(8.1)
5 92.0 (0.5) 69.2 (69.0) 40.6 (11.8) 81.3(30.8) 81.4(31.4) 89.5 (26.7) 85.8(19.4) 81.2(18.6) 60.2 (10.3) 64.1(14.1)
6 88.4 (-3.0) 63.5(63.4) 41.3 (13.0) 83.3 (36.6) 82.9 (32.9) 89.8 (27.6) 88.1 (21.9) 82.0(20.1) 60.7 (10.2) 71.1(21.2)
7 83.7 (-1.7) 56.9 (56.7) 40.1 (12.0) 84.1 (39.5) 83.0(32.9) 89.9 (27.5) 87.4 (22.2) 82.2 (21.1) 61.6 (11.7) 74.8 (24.9)
8 82.9 (-8.1) 51.1(51.0) 39.2 (10.3) 84.0 (39.5) 83.9(33.9) 89.9 (27.6) 87.5(22.2) 81.2(19.7) 62.1(12.2) 76.4 (26.4)
9 80.1(-11.1) 47.9 (47.8) 38.5(10.8) 83.1(39.8) 87.0 (37.1) 90.0 (28.0) 87.6 (22.9) 81.8 (20.5) 63.4(13.4) 78.7 (28.9)
10 77.0 (-14.0) 43.4 (43.2) 38.1(9.9) 81.7 (39.8) 86.7 (36.7) 89.7 (27.6) 87.1(22.6) 80.5(19.9) 63.3(12.7) 78.4 (28.1)
11 73.9(-17.0) 42.8 (42.7) 36.3(7.9) 80.3 (39.1) 86.8 (36.8) 89.9 (27.8) 85.7 (21.9) 78.9 (18.6) 64.4(14.5) 77.6 (27.9)
12 69.5(-21.4) 49.1 (49.0) 34.7 (6.9) 16:5.(37.2) 86.4 (36.4) 89.5(27.7) 84.0(20.2) 78.7 (18.4) 65.2 (15.3) 74.9 (25.4)

Table 2: Probing task performance for each BERT layer. The value within the parentheses corresponds to the
difference in performance of trained vs. untrained BERT.

Jawahar et al. 2019



Perturbation approach to evaluate effect of
linguistic property on brain alignment
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Datasets & Model

e Brain: fMRI recordings from Narratives [Nastase et al. 2021]

o listening to a story
o Nn=18

e Annotate linguistic properties using Stanford core-NLP stanza library
[Manning et al. 2014]

e BERT base (12 layers, pretrained)



(Linear) contribution of linguistic properties is
successfully removed from BERT

Layers Word Length TreeDepth TopConst Tense SubjNum ObjNum
S-classes 8-classes 20-classes 2-classes 2-classes 2-classes
(Surface) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic)
before after before after before after before after before after before after
| 32.14 03.40 32.41 13.20 42.13 20.71 70.53 53.51 86.16 41.80 88.39 53.94
2 30.80 14.48 32.73 15.56 52.05 30.35 68.30 56.50 88.39 54.37 85.50 58.17
3 31.69 17.14 32.19 15.51 54.41 31.69 70.08 56.28 87.94 52.51 84.82 61.07
4 38.83 14.72 30.05 07.73 57.01 22.34 69.64 58.07 89.41 48.50 88.16 50.71
5) 39.73 10.82 32.73 12:15 69.55 20.55 74.10 60.07 90.62 52.07 89.28 50.16
6 39.19 16.54 35.94 18.12 69.94 23.58 71.43 53.56 90.17 48.33 90.17 55.16
7 38.39 11.94 34.01 17.34 80.04 27:12 7232 59.30 89.28 36.91 88.39 60.71
8 37.05 03.52 31.55 09.16 79.13 26.03 73:21 58.28 89.73 45.50 87.05 57.71
9 33.92 01.70 31.55 07.27 72.62 26.11 71.42 56.26 91.51 54.31 88.83 56.96
10 32.58 09.48 31.55 12.67 70.41 29.04 1321 60.85 91.07 53.05 88.39 55.83
11 36.16 12.04 32.62 08.03 67.12 28.07 71.87 56.50 88.93 56.26 86.60 54.73
12 33.03 10.01 29.41 14.13 60.05 24.62 73.21 58.96 87.94 53.50 84.82 53.82




Removal of linguistic properties significantly
decreases alignment

Avg Pearson Correlation
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Top constituents and word length contribute the
most to the alignment trend across layers

Correlations across layers

Tasks

Decoding Task with pretrained BERT
vs Brain Recordings Residuals

Brain

(BERT vs Residuals)

Recordings

TopConst

20-classes

(Syntactic)
before after
42.13 20.71
52.05 30.35
54.41 31.69
57.01 22.34
69.55 /%(?5/
69.94 23.58
80.04 27:12
79.13 26.03
72.62 26.11
70.41 29.04
67.12 28.07
60.05 24.62

Word Length 0.571 0.182
TreeDepth 0.299 0.491
TopConstituents | 0.884 0.407
Tense 0.377 0.606
Subject Number 0.681 0.589
Object Number 0.449 0.359

Avg Pearson Correaltion

— pretrained BERT — Removal of TopColstituents

T T
1 2 3 45 6 7 8
Layer Depth

9 10 11 12

If col 2 is high -> ling. prop.
less important for trend

If col Tis high & col 2 is low ->
ling. prop. important for
trend



Today: evidence from 3 perturbation case studies

1. Alignment due to more than next-word prediction & word-level

semantics
[Merlin & Toneva, 2022 arXiv https://arxiv.org/abs/2212.00596]

2. Joint processing of linguistic properties
[Oota, Gupta, and Toneva 2022 arXiv https://arxiv.org/abs/2212.08094]

3. Training to summarize narratives improves brain alignment
[Aw & Toneva, ICLR 2023 https:/arxiv.org/abs/2212.10898]
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Case study 3

e To achieve deeper understanding of language, recent works train language
models to summarize narrative datasets [Kryscinski et al. 2021, Sang et al. 2022]

e Arethese models truly learning deeper understanding of language?

Investigate with one system that truly understands language:
the human brain

- Training language models for deeper understanding improves brain

alignment, Aw and Toneva ICLR 2023 https://arxiv.org/abs/2212.10898

Khai Loong Aw
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Perturbation: training to summarize narratives
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You only <MASK> once. Summary: In this chapter, ...
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dataset (summarization of narrative
b chapters)
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NLP model
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Models trained to summarize narratives align better
with brain recordings
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Vary context provided to NLP model
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fMRI recordings changes

brain alignment accuracy



10-fold increase in context length that results in the
peak of brain alignment
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Why do models that learn to summarize narratives
align better with brain recordings?

Not because of next-word prediction
o BookSum << pretrained at LM

Not (entirely) because of greater similarly of text domain to brain

dataset
o BookSum >= LM-BookSum at brain alignment

Partially because of summarization
o CNNSum >= pretrained at brain alignment, but BookSum >> CNNSum

More brain-aligned representation of important discourse elements
o BookSum >> pretrained for sentences with Characters, more than other sentences



Today: evidence from 3 perturbation case studies

1. Alignment due to more than next-word prediction & word-level

semantics
[Merlin & Toneva, 2022 arXiv https://arxiv.org/abs/2212.00596]

2. Joint processing of linguistic properties
[Oota, Gupta, and Toneva 2022 arXiv https://arxiv.org/abs/2212.08094]

3. Training to summarize narratives improves brain alignment [aw &
Toneva, ICLR 2023 https://arxiv.ora/abs/2212.10898]
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Linguistic Property Similarity
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