""\' N
gipsa-lab

l'
i Grenoble | images | parole | signal | automatique
© ——

o))

MODELING SPEECH ACQUISITION USING SELF-SUPERVISED MACHINE LEARNING,
A FOCUS ON THE ACOUSTIC-TO-ARTICULATORY MAPPING

Thomas Hueber, GIPSA-lab

Seminar LIS/ Talep, 2022

0 m\,"‘,, \ UNIVERSITE
) / ) ! Grenoble UMR 5216 .
Alpes /X, \/X




CRISSP team@GIPSA-lab

® Automatic speech processing

® Speech synthesis (prosody modeling, expressivity, low-latency,
gesture-based control)

® Multimodal speech processing (visual speech recognition, Cued-

speech)
® Speech enhancement & source separation
® Speech production

® Acquisition and modeling of co-verbal signal

e Conversational agent / Humanoid robot

e 1 PR, 3DRCNRS (1 emerite), 2 CR CNRS,
2 IR CNRS & 7 PhD candidates

® |nvolved in the chair « Bayesian Cognition and Machine
Learning for Speech communication » of the Grenoble

31A institute MIAI (GIPSA-lab, LPNC)
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Introduction

® Speech production is a complex motor process | Brain]
® Speech and language acquisition = | Motor commands | : Nl

discovering & learning the complex relationships
between acoustic/articulatory (motor)/linguistic levels -

Articulatory movements
(tongue, lips, velum, jaw)

® Focus on the articulatory level & acoustic-articulatory
mapping

Laryngeal system
(vocal folds)

>| Respiratory system ‘
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Acoustic-articulatory mapping, a major role in speech perception and production

Articulatory Organ
: 4 Movement
® Speech perception
® Articulatory input helps decoding speech in adverse conditions
® Lips (Sumby and Pollack, 1954; Benoit et al., 1994; Grant and Seitz, 2000), ,"‘ '
but also tongue (Badin et al., 2008), or tactile information (Treille et al. 2017) Y * *
L I\/Iotor/Perceptuo—motor theories Liberman and Mattingly, 85) (Schwartz et al., 2012) § 3|  Processing Prediction &
= £ Load Estimation
® Speech perception —> transforming of auditory input into a set of motor commands A A
(see Pulvermuller et al., 2006) or (Sato, Tremblay, & Gracco, 2009) for neuro-physiological correlates) '\‘ ,"

Inverse
Model

Farward

[state, motor command, context] —= sensory feedback

CNS Intarnal /

Representations

® Speech production

[previous gtate, motor command, context] —= glate

from Wolpert & Ghahramani, Nature, 2000
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from Wu et al., J. Neuroscience, 2014

® An « inverse model » transforms an acoustic target into a set of motor
commands (Tourville, Reilly, Guenther, 2008), (Houde et Nagarajan., 2011), (Perrier et al., 2012)



Acoustic-to-articulatory inverse mapping

® A ill-posed problem: non-linear & many-to-one (tal, 1978), (Qui & Carreira-Perpifian, 2007)
(Neiberg et al, 2008)

» Several vocal tract contfigurations can give almost the same spectrum
(e.g. bite-block experiments)

* Inter-speaker variability (idiosyncrasy)

* Specific anatomy/morphology, e.g. particular shape of the vocal cavities
(Ladefoged and Broadbent, 1957)

» Speaker-specific articulatory strategy (Mokhtari et al., 2007), (Story et al. 2005, 2007)

 An interaction of both, e.g. articulation influenced by the shape of the from (Douros et al., 2019) -

palate (Fuchs et al., 2008) ArtSpeechMRiIfr

® Children seem to learn this complex inverse mapping mostly in a

self/weakly supervised manner (i.e. without supervisory
feedback)

® for a given acoustic target, they are never provided with an

explicit and complete feedback on the corresponding vocal

tract configuration (our working hypothesis here...)
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Computational model of speech learning

® Several studies proposed computational models of speech acquisition with a focus on the articulatory-
acoustic mapplng (Moulin-Frier et al., 2014), (Rasilo et Rasanen, 2017) (Philippsen et al., 2021), (Pitti et al., 2021)

® However, most models are evaluated on relatively simple linguistic material (isolated vowels, syllables)
and/or synthetic speech data

Philippsen et al. 2021 Moulin Frier et al, COSMO model (2011)

) R Speaker Environment Listener
"t Perceptlon -~ N Generation —

Ambient Speech ’m Speech Sounds Forward Model
\ e

,r»
[Temporal Integratlon " Temporal Rollout
— \\ . y

Exnlorati ‘ Goal ‘ | Articulatory

Xploration—:3» Space Parameters

\
- I/

. ol
Inverse Model

"
= -
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Deep learning approach

Lakhotia et al, 2021,

, , , . On Generative Spoken Language Modeling from Raw Audio
® Deep learning models neural networks, trained in a self-supervised

manner, can be used as « tools » to study language and speech
. / S P : : Pretrained
acquisition 5 uLM ; LM
" Spoken '
: : : Speech
® Reverse engineering approach (Dupoux, 2016) . Language Generation
« constructing scalable computational systemsthat can, when fed with  Moaeiing @
realistic input data, mimic language acquisition as it is observed in f Quantizer || Resynthesis .
infants ». i Encoder Decoder | Pretrained
(S2u) (u2S) : .
e Computational platform for testing which « innate learning constraints [ Acoustic Unit 1
. Discovery

are necessary for speech and language acquisition » (Linzen, 2018) 5 |

______________________________________________________

e Able to deal with real-world data, can scale, can deal with raw data

(limiting potential bias) Model architecture

and tasks ASR evaluation

® Zero-ressource challenges (shatz etal., Dupoux et al)

® [earning the acoustic and linguistic characteristics of a language from Long term goal: Build a computation model of speech
raw audio (discovering Speech units, lexicon, discrete resynthesis, acquisition, based on self-supervised deep learning, with
etc.) explicit access to articulatory/motor knowledge

® Articulatory level is almost never considered
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Articulatory synthesis & inversion

Silent speech interfaces
® A parallel line of research, with technological goals, e.g

® Direct mapping: articulatory synthesis / silent speech interface Direct mapping

® |Inverse mapping: visual biofeedback

® Direct or inverse models built from: Visual biofeedback
® Parallel recordings of articulatory and acoustic speech data
| Inverse
® Supervised training mapping
® Direct mapping: GMM (Toda et al., 2006), HMM (Hueber et al, 2006),
DNN (Aryal & Gutierrez-Osuna, 2016), RNIN (Taguchi & T. Kaburagi, 2018), Encoder-Decoder,
(Chen et al. 2021) US
' RT-MRI

® Inverse mapping: Codebook (©ounie et Laprie, 2005), ANN (Richmond, 2004, GMM
(Toda et al., 2008), HMM (Hiroya et al, 2004), DNN (Uria et al, 2011), RNN (Liu et al., 2015),

’
/
.
{ ¥ 5
(] . WY
. )
4
8 a
y

Encoder-Decoder udupa, et al 2022) . B

® Semi-supervised training / model adaptation

® |nverse (Hueber et al., 2015), (Girin et al., 2016) & Direct mapplng (Bocquelet et al., 2016)
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Research goals and questions

® Goal: studying speech acquisition via self-supervised learning models
with a focus on the role of motor/articulatory representations

® Research questions:

® Does articulatory knowledge improve speech representations learned in a self-

supervised manner? (Hueber et al. Neural Comp., 2020)

® Does an explicit access to articulatory knowledge improve speech decoding ?

(e.g. in adverse COﬂditiOﬂS) (Georges et al., Interspeech 2021)

® How inverse acoustic-to-articulatory inverse mapping can be learned in a self-
supervised manner? (Georges et al., ICASSP 2022)

® What is the the role of articulatory knowledge in the discovery of phonological

units? (Georges et al., Interspeech 2022)
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Predictive coding of audiovisual speech

(Hueber et al. Neural Computation, 2020)

Ct
N N N
A .
® Question: Does articulatory knowledge improve speech representation (g (9 , ( n | ( e )
. . \_/ N R
learned in a self-supervised manner? . . |
[] 24 T Zt41 ? Zg42 IT 243 ? Zt4-4
® Predictive coding : a widely used pretext task in SSL of speech , IR R S O N S
. / Genc \ [ Genc \ [ Yenc \ | Yenc \ /an(‘. \ / Jenc \ [/ Yenc \ /| Yenc
representation / \ / \ / \ / \ / \ \ \ \
o , . T3 Ti-2 | Ti-1 Tt Lt+1 Lt 42 Tt43 Lt44
® Predicting the future the speech signal \ |
[T m———Tr—"
(Chung et al., 2020 et al.), (van der Oord et al., 2019) M '”' A "' [ =
: : . : from van der Oord et al., 2019, CPC
® A classic framework in cognitive & neuroscience (Rao, Ballard,1999), (Friston
2003-2005-2011), (Hovsepyan et al., 2020)
® The brain is described as a ‘prediction machine’ constantly forming predictions ‘E
Predictions ,»
about upcoming input which guide the interpretation of sensory data

® Goal: minimizing prediction error / surprise VASCIctons )» 5

+ Prediction errors

QOS‘ (mismatch response)

‘ “* Prediction errors
(mismatch response)

s there a benefit to exploit articulatory movements (mainly the lips)
in addition to auditory speech ? e R

(Hypothesis: Lip movements anticipate the sound ...) Simplified scheme of the hierarchical predictive coding
framework (Friston, 2005, 2008, 2010)
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Predictive coding of audiovisual speech

(Hueber et al. Neural Computation, 2020)

Predicting the future ... from the past auditory/visual inputs %, = f(xz, L, x¢ 1, 1,y %t 7, L 1)

Tt—n I, Tes -,

~100hours of speech data

waveform

ISTFT| or
MFCC

Sequence of feature
vectors

Raw 2D lip
images

(MECCy,_, |
MPCCyy,_.

MFCC, .

MICC),,

Pra-trained audia - Audiov_isual
or - sub-network . fusicn
" (CNN or FF-DNN]

. Pre-trzined visual
. sub-network (CNN)

T l ‘

Mr CCI A+ n“

MECCys .,

Experimental results (TCD-Timit)
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Articulatory-reqularized VAE

(Georges et al, 2021)

Articulatory constraint
® Question: Does an explicit access to articulatory knowledge improve speech decoding in [ p(2)
adverse conditions? " Articulatory model \ /
. . . ) - 1 Tl )
® Proposed approach: Speech denoiser based on VAE & articulatory knowledge in its latent - C i:i :
4 4
space o | Encoder i:i Decoder |
c| aak) | px2) |g
® Step 1: Extract a linear articulatory model from raw EMA recordings from a reference speaker @ ) g
] o Q ®
. . : . . . . ) Y " s
o B.U|I.d|ng an « articulatory model » using a simple decompo.smon technique called « guided-PCA », & /atent Spk
similarly to as (Maeda, 1979) (Beautemps et al., 2001) (Badin et al. 2002) ‘ '
EMA view Articulatory parameters
—— Palate 127 2
® Lower incisive coil ®
Tongue coils £ M 1
e Pnghe 510+
® Lips cails = ® 0 ——— — —
k=)
g:) 8 - ¢ -1 -
Guided-PCA
-2 -
2 4 6 8 10 12 & N SRS &
AT Y O ANY O
Depth (cm) Q@O)&o 0«‘9\}0\?&@"\1@9
N
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Articulatory-reqularized VAE

(Georges et al, 2021)

® Step 2: Constraining some of the latent variables of the VAE so that they have the same distribution as
these 7 articulatory parameters

® |nitially proposed for controlling the timbre of music synthesizer sounds (Roche et al., TISMIR, 2021)

Articulatory constraint
p(z)

X )
// N O i[O} Z T Qg (2]x) [R(Z, a(x))] :
/ \ VL o E : E g
§ Encoder (jlg|i| Decoder S with
,u« TB \ s| azlx) |81} plx|z) |g 2
LP/LH § : = ’R(z,a(x)) = || z1.8 —a(x) |
5/,\\; wn — )
k — \‘J/ 4 J /atent spm T

articulatory parameters
associated with the acoustic observation X
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Articulatory-regularized VAE

(Georges et al, 2021)

Implementation details: speaker-dependent models, encoder&decoders implemented as 3 layers DNN with 100 neurons in each layer,
speech signal encoded using 18 Bark-scale coefficients and reconstructed using LPCNet neural vocoder

ASR-based objective evaluation Perceptual evaluation (MUSHRA, 23 listeners)
PB2009 BY2014 . 3 -
VAE 1.01 T T
07 0.8 - O 8
>
S 40 4 0.6 - .
-
9 0.4 - S v
207 0.2 - 1 _ a
VAE W ARVAE
0 0.0 = -~ L
No noise 10dB 5dB  0dB No noise 10dB 5dB  0dB No noise 10dB 5dB 0dB
e AR-VAE slightly outperforms VAE, but no massive effect
Noisy speech VAE  AR-VAE Noisy speech VAE  AR-VAE

) o) W) ) o) o)
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SSL of acoustic-to-articulatory inverse mapping

(Georges et al., 2021-2022)

® Question: How a child can learn inverse the acoustic-to-articulatory

mapping in a self-supervised manner?

® Computational model ot motor control

(Wolpert, Miall & Kawato (1998), (Tourville, Reilly, Guenther, 2008), (Houde et Nagarajan., 2011),

(Perrier 2012)

e feedback control (early stage of learning, adverse condition) —> slow

e feedforward control (« automatic pilot ») —> fast

feedback control

Self/weakly-

sensory ) Inverse
target model

Motor command

feedforward control

Forward
(internal) model

sensory feedback

Motor
—

execution

predicted sensory
feedback

Adapted from Wolpert, Miall & Kawato (1998) and (Perrier 2012)
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SSL of acoustic-to-articulatory inverse mapping
(Georges et al., 2021-2022)

audio input

® Computational model of speech production S
based on DNN ¢ = -

|"||||"||||llu ..... ,

® Pre-trained (and frozen) articulatory synthesizer

® |nput: 7 articulatory parameters Inverse model g

e Qutput: 18-dimensional Bark-scale coefficients

® Pretrained on a EMA-audio recordings (~30mn, 1 male speaker)

® Architecture 4 layers of 200 neurons, standard training
procedure

e Audio synthesis using a neural vocoder (LPCNet) + original 10

* Inverse model recovering articulatory parameters from
the acoustic speech input Forward model f

® unidirectional LSTM, 2 layer, 32 units each

/\ ~
predicted audio output synthetic audio output

—HE —HE

® Forward model predicting the acoustic consequences

of articulatory commands

® same architecture as the synthesizer, but trainable
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SSL of acoustic-to-articulatory inverse mapping
(Georges et al., 2021-2022)

audio input

® Model trained end-to-end to repeat audio stimuli S -
from 3 other speakers

® Starting from a random initialization |
Inverse model g estimated
. articulatory trajectories

| |.'||||"||||Ilu ..... ,

® |nverse mapping a = g(s) J—
/A \
| L | L1
® Articulatory synthesis § = ¢(a) and forward mapping \%\5%\\
A v LPILHNJH  /7p ™
s = f(a A eyl

® Update of the forward model (backprop.) o| D

o L. . =|§— 5| ability of the forward model to approximate

the physical system (i.e. the synthesizer)
® Update the inverse model (backprop. but with the forward Forward model f

model frozen)

o [, =||5— s| discrepancy between audio input and predicted audio output synthetic audio output

synthetic audio output W W
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SSL of acoustic-to-articulatory inverse mapping
(Georges et al., 2021-2022)

audio input = Forward model nverse model
\"‘ 4
T ......,4'...—{ll..|[“|l|.-... p = ‘ ]_ . 4 . e
Inverse model g estimated ‘a . o
articulatory trajectories U'; ’ m«
U"b-v " X \ .“ U) ] m
fLH)\JH \/, E ® —
A o0 (i
j_ A — m .'.'.0.. o m
‘:, e .:yn“.':o‘ig o T Se g0l *° o "o o0 ¢ "
1 . O — R A s Ll [T !Oto‘hﬁoof:o:gn0\0-.0.0::..:.*..-. B O . 1 O
Pre-trained articulatory ' ' :
Forward model f e nthaetzor =4 0 50 100
| I Epoch number
§ Ppredicted laudio output S symheticl: audio output
¥ | ‘I ) . Irver:ed art o artis art
Inverted art artis art //__\ — 2
100 1 . w0{ —— — ';; 35 A ) osd N\ \ TN —
s0d | ol . 2.0 00 T — —
- N | - | = <~
000 '\.,_\/VV\\[\‘A 4 ‘\’JVVN\/\\’\’\\, ):oc e — - - _')L)\\<\ \_f/;—/”"f‘
-0.25 - TN M— -0.25 - - — 10 10 | \\\\///
R e
fi/ - e PPy | : 5 p = 5 : g : -
I 0 0 0 &0 30 100 0 2 10 60 80
/aba/
S . =\ e Target Synthesis
B [ Target Synthesis A .
A 0 ) )
: . : )
3 .
3 1 e ‘ ))) ‘ ))) 8 Original
Original L Predicted
71 Predicted , , , , ,
2 3 6 0 10 12
2 4 6 & 0 12

18 | Self-supervised learning of the acoustic-articulatory mapping - Thomas Hueber - Seminar LIS Marseille



Conclusions and perspectives

® Selt-supervised deep learning model can be used to study speech learning mechanisms

® with a focus on acoustic-articulatory mapping

® SSL of speech representation from multimodal input (lips + audio) using predictive coding

® |nformation provided by the visual modality is real but limited.

® Visual-only information does not evidence a stable advance of lips on sound (as sometimes stated in the literature).
® Articulatory-regularized VAE

® QOutperforms VAE but by a small margin only ... (we need to scale here ...)

® Speech perception: a small (but signiticant) benetit of relying on articulatory prior knowledge for decoding speech in adverse conditions
® Computation model ot speech acquisition inspired by speech motor control model

® Self-supervised learning of acoustic-to-articulatory inverse model

® Current work / perspectives:
® |ntroducing biomechanical constraints in the inverse model
® [nvestigating the role of articulatory representations for the discovery ot phonological units (see Georges et al., Interspeech 2022)

® Connecting this research with developmental & neuro-physiological data (holy grail?) ...
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The end!

Thanks!
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Collaborative work:

Eric Tatulli (post-doc, now at TIMC)
Marc-Antoine Georges (PhD, GIPSA-lab, LPNC)
Fanny Roche (Arturia, GIPSA-lab)

Laurent Girin (GIPSA-lab)

Jean-Luc Schwartz (GIPSA-lab)

Julien Diard (LPNC)

Xavier Alameda-Pineda (INRIA, Montbonnot)
Pierre Badin (GIPSA-lab)
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