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• Automatic speech processing


• Speech synthesis (prosody modeling, expressivity, low-latency, 
gesture-based control)


• Multimodal speech processing (visual speech recognition, Cued-
speech)


• Speech enhancement & source separation


• Speech production 


• Acquisition and modeling of co-verbal signal


• Conversational agent / Humanoid robot


• 1 PR, 3 DR CNRS (1 emerite), 2 CR CNRS,  
2 IR CNRS & 7 PhD candidates


• Involved in the chair « Bayesian Cognition and Machine 
Learning for Speech communication » of the Grenoble 
3IA institute MIAI (GIPSA-lab, LPNC)
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Introduction 

• Speech production is a complex motor process


• Speech and language acquisition =  
discovering & learning the complex relationships 
between acoustic/articulatory (motor)/linguistic levels


• Focus on the articulatory level & acoustic-articulatory 
mapping
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Brain

Articulatory movements 
(tongue, lips, velum, jaw)

Motor commands

Respiratory system

Laryngeal system 
(vocal folds)

Communication goal

/a/
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Acoustic-articulatory mapping, a major role in speech perception and production 

• Speech perception


• Articulatory input helps decoding speech in adverse conditions 


• Lips (Sumby and Pollack, 1954; Benoît et al., 1994; Grant and Seitz, 2000),  
but also tongue (Badin et al., 2008), or tactile information (Treille et al. 2017) 


• Motor/Perceptuo-motor theories Liberman and Mattingly, 85) (Schwartz et al., 2012)


• Speech perception —> transforming of auditory input into a set of motor commands  
(see Pulvermuller et al., 2006) or (Sato, Tremblay, & Gracco, 2009) for neuro-physiological correlates)
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from Wu et al., J. Neuroscience, 2014

from Wolpert & Ghahramani, Nature, 2000

• Speech production


• An « inverse model » transforms an acoustic target into a set of motor 
commands (Tourville, Reilly, Guenther, 2008), (Houde et Nagarajan., 2011), (Perrier et al., 2012)
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say /u/ !
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• A ill-posed problem: non-linear & many-to-one (Atal, 1978), (Qui & Carreira-Perpiñán, 2007), 

(Neiberg et al, 2008)


• Several vocal tract configurations can give almost the same spectrum  
(e.g. bite-block experiments)


• Inter-speaker variability (idiosyncrasy)


• Specific anatomy/morphology, e.g. particular shape of the vocal cavities 
(Ladefoged and Broadbent, 1957)


• Speaker-specific articulatory strategy (Mokhtari et al., 2007), (Story et al. 2005, 2007)


• An interaction of both, e.g. articulation influenced by the shape of the 
palate (Fuchs et al., 2008) 
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from (Douros et al., 2019) - 
ArtSpeechMRIfr

Acoustic-to-articulatory inverse mapping 

/a/

• Children seem to learn this complex inverse mapping mostly in a 
self/weakly supervised manner (i.e. without supervisory 
feedback)


• for a given acoustic target, they are never provided with an 
explicit and complete feedback on the corresponding vocal 
tract configuration (our working hypothesis here…)



| Self-supervised learning of the acoustic-articulatory mapping - Thomas Hueber - Seminar LIS Marseille

Computational model of speech learning

• Several studies proposed computational models of speech acquisition with a focus on the articulatory-
acoustic mapping (Moulin-Frier et al., 2014), (Rasilo et Räsänen, 2017) (Philippsen et al., 2021), (Pitti et al., 2021) 


• However, most models are evaluated on relatively simple linguistic material (isolated vowels, syllables) 
and/or synthetic speech data
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Moulin Frier et al, COSMO model (2011)Philippsen  et al. 2021
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Deep learning approach

• Deep learning models neural networks, trained in a self-supervised 
manner, can be used as « tools » to study language and speech 
acquisition


• Reverse engineering approach (Dupoux, 2016) 
« constructing scalable computational systems  that can, when fed with 
realistic input data, mimic language acquisition as it is observed in 
infants ».


• Computational platform for testing which « innate learning constraints 
are necessary for speech and language acquisition » (Linzen, 2018)


• Able to deal with real-world data, can scale, can deal with raw data 
(limiting potential bias)


• Zero-ressource challenges (Shatz et al., Dupoux et al.)  


• Learning the acoustic and linguistic characteristics of a language from 
raw audio (discovering Speech units, lexicon, discrete resynthesis, 
etc.)


• Articulatory level is almost never considered

7

Lakhotia et al, 2021,  
On Generative Spoken Language Modeling from Raw Audio 

Long term goal: Build a computation model of speech 
acquisition, based on self-supervised deep learning, with 

explicit access to articulatory/motor knowledge
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• A parallel line of research, with technological goals, e.g


• Direct mapping: articulatory synthesis / silent speech interface 


• Inverse mapping: visual biofeedback


• Direct or inverse models built from:


• Parallel recordings of articulatory and acoustic speech data


• Supervised training 


• Direct mapping: GMM (Toda et al., 2006), HMM (Hueber et al, 2006),   
DNN (Aryal & Gutierrez-Osuna, 2016), RNN (Taguchi & T. Kaburagi, 2018), Encoder-Decoder, 
(Chen et al. 2021)


• Inverse mapping: Codebook (Ounie et Laprie, 2005), ANN (Richmond, 2004),  GMM 
(Toda et al., 2008),  HMM (Hiroya et al, 2004), DNN (Uria et al, 2011), RNN (Liu et al., 2015), 
Encoder-Decoder (Udupa, et al 2022)


• Semi-supervised training / model adaptation


• Inverse (Hueber et al., 2015), (Girin et al., 2016) & Direct mapping (Bocquelet et al., 2016) 
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Articulatory synthesis & inversion
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Research goals and questions

• Goal: studying speech acquisition via self-supervised learning models 
with a focus on the role of motor/articulatory representations


• Research questions: 


• Does articulatory knowledge improve speech representations learned in a self-
supervised manner? (Hueber et al. Neural Comp., 2020)


• Does an explicit access to articulatory knowledge improve speech decoding ?  
(e.g. in adverse conditions) (Georges et al., Interspeech 2021)


• How inverse acoustic-to-articulatory inverse mapping can be learned in a self-
supervised manner? (Georges et al., ICASSP 2022)


• What is the the role of articulatory knowledge in the discovery of phonological 
units? (Georges et al., Interspeech 2022)
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/a/

Marc-Antoine Georges’s PhD!
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Predictive coding of audiovisual speech 
(Hueber et al. Neural Computation, 2020)

• Question: Does articulatory knowledge improve speech representation 
learned in a self-supervised manner?


• Predictive coding : a widely used pretext task in SSL of speech 

representation


• Predicting the future the speech signal 
(Chung et al., 2020 et al.), (van der Oord et al., 2019)


• A classic framework in cognitive & neuroscience (Rao, Ballard,1999), (Friston 

2003-2005-2011), (Hovsepyan et al., 2020)


• The brain is described as a ‘prediction machine’ constantly forming predictions 

about upcoming input which guide the interpretation of sensory data


• Goal: minimizing prediction error / surprise
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Simplified scheme of the hierarchical predictive coding 
framework (Friston, 2005, 2008, 2010)

Is there a benefit to exploit articulatory movements (mainly the lips) 
in addition to auditory speech ? 


(Hypothesis: Lip movements anticipate the sound …)

…

Prédictions

from van der Oord et al., 2019, CPC
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Predicting the future … from the past auditory/visual inputs

25ms

waveform

|STFT| or 
MFCC

Sequence of feature 
vectors


Raw 2D lip 
images

Predictive coding of audiovisual speech 
(Hueber et al. Neural Computation, 2020)
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~100hours of speech data 
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Articulatory-regularized VAE

• Question: Does an explicit access to articulatory knowledge improve speech decoding in 
adverse conditions?


• Proposed approach: Speech denoiser based on VAE & articulatory knowledge in its latent 
space 


• Step 1: Extract a linear articulatory model from raw EMA recordings from a reference speaker


• Building an « articulatory model » using a simple decomposition technique called « guided-PCA »,  
similarly to as (Maeda, 1979) (Beautemps et al., 2001) (Badin et al. 2002)
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(Georges et al, 2021)

Guided-PCA
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• Step 2: Constraining some of the latent variables of the VAE so that they have the same distribution as 
these 7 articulatory parameters 


• Initially proposed for controlling the timbre of music synthesizer sounds (Roche et al., TISMIR, 2021)
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Step 2

with

articulatory parameters 

associated with the acoustic observation x

Articulatory-regularized VAE
(Georges et al, 2021)
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• AR-VAE slightly outperforms VAE, but no massive effect
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ASR-based objective evaluation Perceptual evaluation (MUSHRA, 23 listeners)

Implementation details: speaker-dependent models, encoder&decoders implemented as 3 layers DNN with 100 neurons in each layer,  
speech signal encoded using 18 Bark-scale coefficients and reconstructed using LPCNet neural vocoder

Noisy speech VAE AR-VAE Noisy speech VAE AR-VAE

Articulatory-regularized VAE
(Georges et al, 2021)
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SSL of acoustic-to-articulatory inverse mapping

(Georges et al., 2021-2022)

• Question: How a child can learn inverse the acoustic-to-articulatory 
mapping in a self-supervised manner?


• Computational model of motor control  
(Wolpert, Miall & Kawato (1998), (Tourville, Reilly, Guenther, 2008), (Houde et Nagarajan., 2011), 
(Perrier 2012)


• feedback control (early stage of learning, adverse condition) —> slow


• feedforward control (« automatic pilot ») —> fast
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+Motor 
execution

sensory 
target

Inverse 
model

Motor command sensory feedback

feedback control

-

+

+

Adapted from Wolpert, Miall & Kawato (1998) and (Perrier 2012)

Forward 
(internal) model

feedforward control

predicted sensory 
feedback

Self/weakly-
supervised learning

/a/
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• Computational model of speech production 
based on DNN 


• Pre-trained (and frozen) articulatory synthesizer 


• Input: 7 articulatory parameters 


• Output: 18-dimensional Bark-scale coefficients  


• Pretrained on a EMA-audio recordings (~30mn, 1 male speaker)


• Architecture 4 layers of 200 neurons, standard training 
procedure


• Audio synthesis using a neural vocoder (LPCNet) + original f0


• Inverse model recovering articulatory parameters from 
the acoustic speech input


• unidirectional LSTM, 2 layer, 32 units each


• Forward model predicting the acoustic consequences 
of articulatory commands


• same architecture as the synthesizer, but trainable
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SSL of acoustic-to-articulatory inverse mapping

(Georges et al., 2021-2022)

Forward model f

̂s predicted audio output s̃

Pre-trained articulatory 
synthesizer ϕ

a

synthetic audio output

Inverse model g

s
audio input
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• Model trained end-to-end to repeat audio stimuli 
from 3 other speakers 


• Starting from a random initialization


• Inverse mapping  


• Articulatory synthesis  and forward mapping 
 


• Update of the forward model (backprop.)


•  ability of the forward model to approximate 
the physical system  (i.e. the synthesizer)


• Update the inverse model (backprop. but with the forward 
model frozen)


•  discrepancy between audio input and 
synthetic audio output

a = g(s)

s̃ = ϕ(a)
̂s = f(a)

Lint = ∥s̃ − ̂s∥

Lext = ∥s̃ − s∥
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Inverse model g

Forward model f
Pre-trained articulatory 

synthesizer ϕ

s

a

s̃̂s

audio input

estimated  
articulatory trajectories

synthetic audio outputpredicted audio output

SSL of acoustic-to-articulatory inverse mapping

(Georges et al., 2021-2022)
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Forward model Inverse model

Target Synthesis

/i/

Original 
Predicted

Target Synthesis
/aba/

Original 
Predicted

SSL of acoustic-to-articulatory inverse mapping

(Georges et al., 2021-2022)
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Conclusions and perspectives

• Self-supervised deep learning model can be used to study speech learning mechanisms


• with a focus on acoustic-articulatory mapping


• SSL of speech representation from multimodal input (lips + audio) using predictive coding


• Information provided by the visual modality is real but limited. 


• Visual-only information does not evidence a stable advance of lips on sound (as sometimes stated in the literature). 


• Articulatory-regularized VAE


• Outperforms VAE but by a small margin only … (we need to scale here … )


• Speech perception: a small (but significant) benefit of relying on articulatory prior knowledge for decoding speech in adverse conditions


• Computation model of speech acquisition inspired by speech motor control model


• Self-supervised learning of acoustic-to-articulatory inverse model 


• Current work / perspectives: 


• Introducing biomechanical constraints in the inverse model


• Investigating the role of articulatory representations for the discovery of phonological units (see Georges et al., Interspeech 2022)


• Connecting this research with developmental & neuro-physiological data  (holy grail?) … 
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The end!
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Thanks!

Collaborative work: 
 

Eric Tatulli (post-doc, now at TIMC)  
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Laurent Girin (GIPSA-lab)

Jean-Luc Schwartz (GIPSA-lab)

Julien Diard (LPNC)

Xavier Alameda-Pineda (INRIA, Montbonnot)

Pierre Badin (GIPSA-lab)



