Self-supervised representation learning of primate vocalisations : from analysis to synthesis

Jules Cauzinille

Annotation of expressive dimensions on a multimodal French corpus of political interviews

Master's internship LISN Marc Evrard, Albert Rillard

Introduction

- Automatically identify conflictual interactions in political interviews
- Analyse vocal expressivity
- 32 audiovisual interviews (7.5 h)
 - Bourdin Direct
 - Les 4 Vérités
- Multimodality :
 - Automatic transcription
 - Speech quality
 - \circ Video

Expressivity models

- Complicated annotation task : low inter-annotator agreement
- Affective models:
 - Categorical models: Darwin (1872), Ekman (1969) 6 basic emotions, Plutchik (1980) 8 basic emotions, etc.
 - Dimensional models: Magda Arnold (1960) and James Russel (1980) circumplex model of affect

The Circumplex model

Arousal

Physiological activation, vocal excitement : Calm (passive arousal) / Excited (active arousal)

Valence

Level of pleasure : Negative / Positive

Geneva wheel of emotions (Scherer et al., 2013)

Vocal expressivity

- Mostly prosodical :
 - F0, intensity, speech rate, vocal quality
- Frequency code (Ohala, 1984)
 - Acoustic projection of physical force
- Effort code (Gussenhoven, 2004)
 - Articulatory effort
 - F0 variation

Vocal expressivity in a broadcast political context

- Cold anger display (average arousal)
- Minimal hot anger (Fonagy, 1976)
- Arousal histogram
 (2 annotators / 1h corpus)

The segmented approach

- 3 criteria:
 - Expressive variation
 - Semantic unit (clause)
 - 3 seconds threshold

Discrete levels of arousal

- 7 levels likert scale (Joshi et al., 2015)
- Highly frequent neutral arousal
- Most bursts go higher rather than lower
- 7 levels allow for more generalization of the framework

Inter-annotator agreement

- First publication : 1h annotation (12 interviews 5 min each)
 - 2 annotators
- Quadratic-weighted Kappa (Artstein and Poesio, 2008) gives a "moderated" agreement $\kappa_{w} = 0.546$

"MFCC-based model"

- Extraction
 - \circ 25 ms frames
 - \circ 13 MFCCs per frame
 - Trimmed and padded segments 3 s (120 frames)
- Architecture and hyperparameters inspired by Zhao et al. (2019)
 - \circ 2 conv layers : kernel (3 \times 3) with ReLU activation
 - 64 et 128 filters for each layer
 - Two max-pooling layers (2×2)
 - 3 fully connected linear layers
 - 30% dropout

Example of MFCCs representations

"Wav2vec-based model"

- wav2vec2.0 facebook/wav2vec2large-xlsr-53 feature extraction (Conneau et al., 2020, Evain et al., 2021)
- Best model: GRU
 - One hidden layer of size 128
 - Sigmoid activation
 - 10% dropout

Results

Model	RMSE	MSE	MAE
MFCC & CNN	0.555 (+/-0.064)	0.322 (+/-0.081)	0.464 (+/-0.053)
Wav2vec & GRU	0.577 (+/-0.062)	0.336 (+/-0.073)	0.461 (+/-0.051)

Self-supervised representation learning of primate vocalizations, from *analysis* to *synthesis*

P.h.D project - ILCB

Jules Cauzinille

Multidisciplinarity

Speech processing - Computational linguistics

Bioacoustics - Primatology -Origins of language

Signal processing - Deep learning -Self-supervised approaches

RICARD MARXER

BENOÎT FAVRE

THIERRY LEGOUT

ARNAUD REY

Context

- Success of **self-supervised** representation learning in speech processing
 - wavenet, GSLM, ZRSC
- Deep Learning in **bioacoustics:** increasing research and impressive implications
 - Stowell [2022]

Objectives

- Human speech bias:
 - acoustic units
 - vocabulary size
 - overlapping and noise

• Environmental soundscape:

- separation
- information extraction

• Synthesis quality:

- domain shifts
- experimental parameters

Auto-encoders, predictive models (CPC, APC), adversarial models (GAN)

Acoustic unit discovery

Methodology

1. Representation learning

Methodology

- 1. Representation learning
- 2. Probing methods

Bioacoustic tasks: classification in

- species
- call type
- identification (diarisation)
- physiological traits

Soundscape:

- time-of-day prediction
- sound tagging...
- ...**Unsupervised tasks:** - Odd-man-out

Methodology

Acoustic probing

- 1. Representation learning
- 2. Probing methods
- 3. Synthesis

- **Bioacoustic implications :**
- Data-driven VS Physical
- Control
- Playback experiments

Datasets

Primates :

- Rousset (saïmiris, papio papios)
- INT (marmosets)
- Angela Dassow (lar gibbons)
- Vallée des singes (bonobos)

Other:

- Human speech (Librispeech, MSWC)
- Noise (Audioset)

Different species and vocalisation systems

Recording setup - environmental noise

PhD project

Relevance for the ILCB

Understanding the model before leveraging its performances

• Probing the **black box** and making DL

a truly scientific tool

- Jointly processing humans and primates to study the origins of language
- Contribute in making the ILCB a leading actor in the computational modeling of language

PhD project

LABORATOIRE D'INFORMATIQUE & SYSTÈMES

Supervisory team

Benoît Favre

Multimodal speech processing Unsupervised representation learning Probing and explanation methods

Thierry Legou

Primatology Primate bioacoustics Animal acoustic monitoring

Ricard Marxer

Self-supervised acoustic representation learning Bioacoustics and Deep Learning Animal acoustic monitoring

Arnaud Rey

Sequence learning in non-human primates Primate bioacoustics