To the Limits of Distributional Semantics and Beyond

Denis Paperno

7.7.2022

Distributional Semantics

Representations for language are learned from word distributions

- LSA, word2vec, GloVe, fastText
- more recently: pretrained large language models (BERT, GPT, etc.)

"impressive natural language understanding and generation capabilities" (PaLM, Chowderry 2022)

Distributional Hypothesis

• Meaning distinctions are reflected in distributional differences

"It may be presumed that any two morphemes A and B having different meanings, also differ somewhere in distribution: there are some environments in which one occurs and the other does not" (Harris 1951)

"You shall know a word by the company it keeps." (Firth 1957)

Example: what word is masked as XXXXX?

Abul-Hassan, the merchant's son, on being shown the portrait of the lady, requested his father to delay the XXXXX till he could reconcile his mind to it.

In East Friesland, it is believed, when seven girls succeed each other in one family, that among them one is of necessity a were-wolf, so that youths are slow in seeking one of seven sisters in XXXXX.

According to a Polish story, if a witch lays a girdle of human skin on the threshold of a house in which a XXXXX is being celebrated, the bride and bridegroom, and bridesmaids and groomsmen, should they step across it, are transformed into wolves.

Distributional models

Very different architectures:

- matrix decomposition (Landauer and Dumais, 1997)
- log-linear classifiers (Mikolov et al., 2013)
- recurrent neural networks (Peters et al., 2018)
- transformers (Devlin et al., 2018)

Very different objectives:

- Multinomial or binomial classification (Mikolov et al., 2013)
- Language modeling (Bengio et al., 2003; Peters et al., 2018; Radford, 2018)
- Sequence denoising (Devlin et al., 2018; Lewis et al., 2020)

Distributional vectors

- Embeddings often encode co-occurrence properties of words
- A common idea:
 - find vectors of words w_i (e.g. *dog*) and contexts \widetilde{w}_k (e.g. *bark*)
 - such that dot products of associated pairs $w_i \cdot \widetilde{w}_k$ is high
 - and for random pairs $w_i \cdot \widetilde{w'}_n$ is low (e.g. *dog vs. logarithm*)
 - often using learning techniques as in neural models (skipgram, GloVe)
 - Language models: larger contexts, >1 word (CBOW, ELMo, BERT, GPT...)
 - Learned word vectors can be compared for similarity

Relatedness/similarity evaluation

• Words with similar distributional vectors have related meanings

money vs. cash, .98 cosine vs stock vs. phone, .04 cosine

Example from WordSim353 (Finkelstein et al. 2002); cosines from a word2vec model

Similarity is not all you need

• Words can have very similar distributions and yet contrast:

Monday/ Tuesday/ Wednesday/ Thursday/ Friday/ Saturday/ Sunday

first/second/third/fourth/fifth/sixth/seventh/eighth/ninth/tenth

Manchester/Liverpool

Capturing Discriminative Attributes

Given two related words, can we find what distinguishes them?

Semeval 2018 Task 10

With Alicia Krebs and Alessandro Lenci

- Given the words *apple* and *banana*, is *red* a discriminative attribute?
- 5K manually validated triples of the form <apple,banana,red>

https://aclanthology.org/S18-1117.pdf

Samaval 2010	$word_1$	$word_2$	attribute	
Semeval ZUIO	airplane	helicopter	wings	
With Alicia Krebs and	bagpipe	accordion	pipes	
Alessandro Lenci	dolphin	seal	fins	
• positive examples:	gorilla	crocodile	bananas	
	oak	pine	leaves	
 negative examples: 	$word_1$	$word_2$	attribute	
• upper bound: 90%	tractor	scooter	wheels	
• leader: 75%	crow	owl	black	
• cosine: 61%	squirrel	leopard	fur	

Lessons

- Discriminative attributes is a hard problem
- Big human/system gap
- Identifying semantic differences is difficult
- But maybe distributions still capture meaning distinctions?
- Shall we see this in text generation/prediction?

Example from generation

From definition generation work with T.Mickus and M.Constant

generating a definition for "Wednesday"

- target: "the fourth day of the week" (Source: merriam-webster.com)
- metrics will favor generated "the tenth day of the week"
- over the attested "The fourth day of the week in many religious traditions, and the third day of the week in systems using the ISO 8601 norm; it follows Tuesday and precedes Thursday." (Source: en.wiktionary.org)

Are large language models better?

- We'll take the example of GPT-2
- "Language Models are Unsupervised Multitask Learners" (Radford et al. 2019)

Example (from Natural Questions dataset): Who wrote the book the origin of species? **Generated answer:** Charles Darwin

GPT-2

(source: <u>Write With Transformer (huggingface.co)</u>)

the third day of the week is Monday, the seventh day of the week is the feast of Saint Anthony, in the evening of the Feast of Epiphany, or the Feast of the second day of the week is Thursday, the first day of the week is Friday called the Sunday, the

called the Lord's day, and it was the

GPT-2 example – where is Liverpool?

GPT-2: Manchester vs Liverpool

Are Manchester and Liverpool the same city?

Yes.

They are actually quite different cities,

I don't think so.

Wide-ranging problem

- examples from generation
- but applies to any problem that uses distributional embeddings
 - inference
 - question answering
 - image retrieval

five tomatoes=/=

etc

north =/=>south

What is the third day of the week?

Probing the distributional hypothesis

All distributional models do this

 $\Pr(t1 \mid c) > \Pr(t2 \mid c)$

Example:

c : She was in the ____.

t1: office

t2: Saturday

Do distributional models do this?

Pr(t1 | c) > Pr(t2 | c)

Example:

c : She was in the office last ____.

t1: Friday

t2: Saturday

Challenge: Can you know the word from the company it keeps?

Given a word's distribution, is it possible to identify the word/the lexical meaning?

• (SAMPLE of contexts of Saturday) > `Saturday'?

BlankCrack experiment

• with Timothee Mickus and Mathieu Constant

The BlankCrack experiment

- Goal: identify meaning contrasts that evade distribution, if any
- How: collect human judgments
- Method: gamify!

The game interface: resolving the word's identity from its distribution

Which word has been blanked out from the following sentences?

"william f. huffman, we are still here, grand rapids leader, december 17, 1919, page 2 a cartoon two years later portrayed an insect attempting to _____ on to a floating match already occupied by two beetles.

the processes of digestion are carried out, according to correct physiological laws undisturbed by any brain-work, and the afternoon is passed in a siesta on some loggia, whilst the sun's rays slowly ______ the anacapri cliff, and long shadows begin to glide down monte solaro's slopes towards the town.

and the driver stood to the engine, full of attention, anticipating that la lison would have to make a famous effort to ascend this hill, already hard to ______in fine weather.

These two words are synonyms

jump

Players can propose their own word pairs

Heed my word, minions of Tippesk!

Give me two words that those pesky squirrels won't be able to tell apart once blanked out. With this word pair, I shall craft riddles and torment them. Avoid synonyms! I wish them to despair...

Word pair types

- participant suggested pairs
- distributional neighbors
- manual (a priori)
 - months: Octobe
 - numbers:
 - colors:
 - days of the week

October vs July

- three vs five
 - black vs grey
 - Wednesday vs Saturday

Number of annotations collected

Success rates (humans):

Models

- Baselines
 - unigram
 - bigram
- Embedding models (pretrained)
 - word2vec
 - BERT (BERT/BETO/UmBERTo/CamemBERT/ruRoberta)

Success rates (models)						
	en	es	fr	it	ru	
human	83.1	86.9	83.8	89.1	87.8	
1-gram	51.9	56.2	53.4	50.8	57.2	
2-gram	60.4	71.2	66.0	70.7	60.1	
BERTs	75.8	71.6	74.1	76.1	74.4	
W2Vs	75.5	77.1	75.5	74.8	72.5	

Examples of indistinguishable pairs

Most word contrasts are distributional (>80% in our biased sample!)

Some words are special and require extra knowledge

- hyena & jackal, baseball & basketball (English)
- aquarelle & gouache (French)
- cilantro & cebollino (Spanish)

Beyond distributional limits

with Sofia Nikiforova, Tejaswini Deoskar and Yoad Winter

https://aclanthology.org/2020.coling-main.280/

Example

Figure 1: An example image.

Ground Truth: A path through Pitshanger Park, near Ealing in the west London suburbs Automatically generated: a park bench sitting in the middle of a park

EXAMPLE

Ground truth caption:

Grand Union Canal locks near Hatton Country World taken on a wet day

EXAMPLE Standard captioning system

(Xu et al. 2015):

the bridge carries the over the canal just west of horton village

EXAMPLE Standard captioning system

(Xu et al. 2015):

the bridge carries the over the canal just west of horton village

•	Canal Road, Hatton, Warwick, Hatton R	Park, V
9	Horton, Royal Borough of Windsor and	d Maic
	Car (OSRM)	Go
	Reverse Directions	

Directions

Distance: 141km. Time: 1:38.

Proposal

- General vocabulary has distributional vectors
- Special items get vectors by embedding their properties (from KB)

Name	Туре	Size, km ²	Latitude	Longitude
Cambourne	town	7.264	52.219984	-0.070078

• For example, embedding geographic entities:

$$GEOEMB(o_i) = d_i \vec{w_d} + a_i \vec{w_a} + s_i \vec{w_s} + E_t(t_i)$$

- d distance
- a azimuth
- s size
- E_t type (village, road, river etc.)

more complete architecture

EXAMPLE

Ground truth caption:

Grand Union Canal locks near Hatton Country World taken on a wet day

Standard (Xu et al. 2015): the bridge carries the over the canal just west of horton village

Our system:

the view of the lock on the grand union canal near hatton

Quantitative results

- Dataset: GeoRic, 29K images from geograph.org.uk
- average of 2 geographic entities per caption

	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE	METEOR	CIDEr
Standard	13.38	2.82	0.64	0.33	15.79	5.55	7.38
Geo-aware	18.12	8.42	3.42	1.46	22.61	10.35	70.53

Conclusion

- Semantics is >80 distributional
- The rest should be grounded in reference and knowledge
- Geo-embeddings: successful non-distributional embeddings
- Open problem: extension to other types via knowledge bases e.g. BDPedia:
 - hyena: Category:Carnivorans_of_Africa
 - jackal: Category: Carnivorans_of_Asia

Contact: <u>denis.paperno@gmail.com</u>

Thanks to all my collaborators:

Mathieu Constant

Tejaswini Deoskar

Alessandro Lenci

Alicia Krebs

Timothee Mickus

Sofia Nikiforova

Yoad Winter

Thank you!