From sequence tagging to graph generation for Spoken Language Understanding

Rim Abrougui, Géraldine Damnati, Johannes Heinecke, Frédéric Béchet

Introduction

- Spoken Language Understanding (SLU) task : reduced to Intent detection and Slot filling
- Working on single Intent Corpora (ATIS, SNIPS)
- Using *flat* semantic annotation scheme with BIO encoding
- → It is not enough for structured semantic representations

[CLS]	AddToPlaylist			
Add	0			
another	0			
song	B-music_item			
to	0			
the	0			
Cita	B-playlist			
Romántica	I-playlist			
playlist	0			
DIO expectation of SNIPS' comple				

BIO annotation of SNIPS' sample

Introduction

- Can we go beyond the Intent/Slot paradigm when dealing with more **complex human-machine** interactions?
 - Multi-domain and Multi-Intents corpora
 - Conversational datasets
 - Dialog context
- Can we take advantage of seq2seq approach rather than sequence-tagging?
- What is the potential of graph generation method on SLU task ?

Objectives

- NLU task on Multi-domain and Multi-Intent dataset: MultiWOZ2.3
- Studying different strategies to project this semantic frames annotations:
 - Sequence tagging approach: flatten MultiWOZ semantic structure to fit the BIO representation
 - ARMILU: Abstract Representation for Multi-Intent spoken and natural Language Understanding
- Contextual NLU/SLU models

Related Work

• Seq2seq NLU/SLU models

1. Y. Feng, Y. Wang, and H. Li, "A sequence-to-sequence approach to dialogue state tracking," 2021

Seq2seq approach for DST with a specification of the domain ontology (MultiWOZ)
 Reduced the hallucination problem
 imited to pre-defined schema

Seq2seq approach for non contextual dataset (SNIPS, ATIS)
 Producing only pointers to word spans in the current utterance
 Iimited to flat SLU models with BIO encoding

Related Work

• Seq2seq NLU/SLU models

2. K. Raman, I. Naim, J. Chen, K. Hashimoto, K. Yalasangi, and K. Srinivasan, "Transforming sequence tagging into a seq2seq task," 2022

Several encoding for mixing words and semantic labels for seq2seq SLU model

Several benchmark corpora
No-contexual or multi-intent datasets
Flat BIO projection

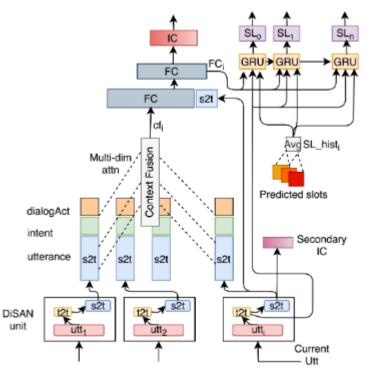
K. Raman, I. Naim, J. Chen, K. Hashimoto, K. Yalasangi, and K. Srinivasan, "Transforming sequence tagging into a seq2seq task," 2022

Input <extra_id_0> Add</extra_id_0>	<extra_id_1> Kent</extra_id_1>	<extra_id_2> James</extra_id_2>	<extra_id_3> to</extra_id_3>	<extra_id_4> the</extra_id_4>	<extra_id_5> Disney</extra_id_5>	<extra_id_6> soundtrack</extra_id_6>
Target <extra_id_0> O</extra_id_0>	<extra_id_1> ARTIST</extra_id_1>	<extra_id_2> I-ARTIST</extra_id_2>	<extra_id_3> O</extra_id_3>	<extra_id_4> O</extra_id_4>	<extra_id_5> PLAYLIST</extra_id_5>	<extra_id_6> O</extra_id_6>

> Only flat BIO single Intent and non contextual SLU

Related Work

- Contextual NLU/SLU models:
 - A. Gupta, P. Zhang, G. Lalwani, and D. Mona, "Casanlu: Context-aware self-attentive natural language understanding for task-oriented chatbots," 2019
 - Using the dialog context for predicting the current interpretation of a turn
 - Building a specific architecture with contextual representation based on a fixed window size made of the last *n* turns
 - Working on Machine-to-Machine Simulated Dialogue Corpus (M2M)





MultiWOZ2.3 dataset

- A large-scale multi-domain and multi-Intent English dataset
- Frequently used in Dialogue State Tracking, Dialog Policy and Dialog Generation tasks.
- Each dialog turn is associated with the current dialog state:
 - > A set of **Intents** and **Slots** with **Values**

Utterances	Semantic annotation
I need to make sure it's cheap and I need parking	"Hotel-Inform":[["Parking", "yes"], ["Price", "cheap", 6,6]]
I'll need the address for one that does have wifi please	"Hotel-Inform":[["Internet", "yes"]], "Hotel-Request":[["Addr", "?"]]
Can I get the postcode for that and I also need to book a taxi to the Golden Wok	"Taxi-Inform": [["Dest","golden wok«, 17,18]], "Attraction-Request": [["Post", "?"]]
The taxi should depart from parkside police station	"Police-Inform":[["Name", "parkside police station"]], "Taxi-Inform":[["Depart", "parkside police station"]]
yes I do, I'd like to make sure I arrive at the restaurant by the booked time	"Taxi-inform": [["Depart", "old schools"], ["Dest", "the restaurant", 12,13]]

Utterances	Semantic annotation			
I need to make sure it's cheap and I need parking	" Hotel-Inform ":[["Parking", "yes"], ["Price", "cheap", 6,6]]			
I'll need the address for one that does have wifi please	"Hotel-Inform":[["Internet", "yes"]], "Hotel-Request":[["Addr", "?"]]			
Can I get the postcode for that and I also need to book a taxi to the Golden Wok	"Taxi-Inform": [["Dest","golden wok«, 17,18]], "Attraction-Request": [["Post", "?"]]			
The taxi should depart from parkside police station	"Police-Inform":[["Name", "parkside police station"]], "Taxi-Inform":[["Depart", "parkside police station"]]			
yes I do, I'd like to make sure I arrive at the restaurant by the booked time	"Taxi-inform": [["Depart", "old schools"], ["Dest", "the restaurant", 12,13]]			

Utterances	Semantic annotation
I need to make sure it's cheap and I need parking	"Hotel-Inform":[["Parking", "yes"], ["Price", "cheap", 6,6]]
I'll need the address for one that does have wifi please	"Hotel-Inform":[["Internet", "yes"]], "Hotel-Request":[["Addr", "?"]]
Can I get the postcode for that and I also need to book a taxi to the Golden Wok	"Taxi-Inform": [["Dest","golden wok«, 17,18]], "Attraction-Request": [["Post", "?"]]
The taxi should depart from parkside police station	"Police-Inform":[["Name", "parkside police station"]], "Taxi-Inform":[["Depart", "parkside police station"]]
yes I do, I 'd like to make sure I arrive at the restaurant by the booked time	"Taxi-inform": [["Depart", "old schools"], ["Dest", "the restaurant", 12,13]]

Utterances	Semantic annotation
I need to make sure it's cheap and I need parking	"Hotel-Inform":[["Parking", "yes"], ["Price", "cheap", 6,6]]
I'll need the address for one that does have wifi please	"Hotel-Inform":[["Internet", "yes"]], "Hotel-Request":[["Addr", "?"]]
Can I get the postcode for that and I also need to book a taxi to the Golden Wok	"Taxi-Inform": [["Dest","golden wok", 17,18]], "Attraction-Request": [["Post", " <mark>?</mark> "]]
The taxi should depart from parkside police station	"Police-Inform":[["Name", "parkside police station"]], "Taxi-Inform":[["Depart", "parkside police station"]]
yes I do, I 'd like to make sure I arrive at the restaurant by the booked time	"Taxi-inform": [["Depart", "old schools"], ["Dest", "the restaurant", 12,13]]

Utterances	Semantic annotation
I need to make sure it's cheap and I need parking	"Hotel-Inform":[["Parking", "yes"], ["Price", "cheap", 6,6]]
I'll need the address for one that does have wifi please	"Hotel-Inform":[["Internet", "yes"]], "Hotel-Request":[["Addr", "?"]]
Can I get the postcode for that and I also need to book a taxi to the Golden Wok	"Taxi-Inform": [["Dest","golden wok«, 17,18]], "Attraction-Request": [["Post", "?"]]
The taxi should depart from parkside police station	" Police-Inform ":[[" Name ", "parkside police station", 5,7]], " Taxi-Inform ":[[" Depart ", "parkside police station",5,7]]
yes I do, I 'd like to make sure I arrive at the restaurant by the booked time	"Taxi-inform": [["Depart", "old schools"], ["Dest", "the restaurant", 12,13]]

Utterances	Semantic annotation
I need to make sure it's cheap and I need parking	"Hotel-Inform":[["Parking", "yes"], ["Price", "cheap", 6,6]]
I'll need the address for one that does have wifi please	"Hotel-Inform":[["Internet", "yes"]], "Hotel-Request":[["Addr", "?"]]
Can I get the postcode for that and I also need to book a taxi to the Golden Wok	"Taxi-Inform": [["Dest","golden wok«, 17,18]], "Attraction-Request": [["Post", "?"]]
The taxi should depart from parkside police station	"Police-Inform":[["Name", "parkside police station"]], "Taxi-Inform":[["Depart", "parkside police station"]]
yes I do, I 'd like to make sure I arrive at the restaurant by the booked time	"Taxi-inform": [["Depart", "old schools"], ["Dest", "the restaurant", 12,13]]

MultiWOZ2.3 dataset

	Statistics
#Conversations	10438
#User utterances	71521
#domains	9
#Slots	28 (27 explicit + « none »)
#intents (Domain-Act)	32
#Domain-Act+Slot	131

Categorical slots with normalized values: yes, no, dontcare, none and ?

- ✤ Other different class of normalized values for periphrasis:
 - « I don't want to pay for wifi »
 - slot*value: Price*free

✤ A large dataset:

- 8438 conversations with 56775 utterances in Train
- 1000 conversation with
 7372 utterances in test
- 8 application domains (*Train*, *Taxi*, *Hotel*, *Restaurant*, *Attraction*, *Hospital*, *Bus*, *Police*) and the *General* domain for generic acts (*bye*, *Greet*, *Thank and Welcome*)

Flat projection: Propositions

• "Convlab: Multi-domain end-to-end dialog system platform," 2019

◆ Dealing with multi-intent annotations suitable for use with a BERT pretrained language model representation

Not fully consistent with the original	tokens	Our version	Convlab	tokens	Our version	Convlab
	[CLS]	Hotel-Inform	Hotel-Inform+	[CLS]	Police-Inform	0
annotation		Hotel-Inform+	Parking*yes		Taxi-Inform	
		Parking*yes		the	0	0
	make	0	0	taxi	0	0
◆Only categorical slots with the 5	sure	0	0	should	0	0
•	it	0	0	depart	0	0
class of normalized values in CLS	's	0	0	from	0	0
	cheap	B-Hotel-Inform+	B-Hotel-	parkside	B-Police-Inform+Name	B-Taxi-Inform+Depart
level		Price	Inform+ Price		B-Taxi-Inform+Depart	
Mono-label in slot level	and	0	0	police	I-Police-Inform+Name	I-Taxi-Inform+Depart
	Ι	0	0		I-Taxi-Inform+Depart	
	need	0	0	station	I-Police-Inform+Name	I-Taxi-Inform+Depart
	parking	0	0		I-Taxi-Inform+Depart	_

Models' implementation

- Transformer based sequence tagging + BIO flat encoding
 1. Multi-label BIO Model
 - mBERT finetuning on the NLU Task

- 2. Convlab-2 (Q. Zhu and al., "Convlab-2: An open-source toolkit for building, evaluating, and diagnosing dialogue systems," 2020)
 - BERTNLU: two MLP layers on top of BERT to predict jointly the intents (multi-label) and the slots (mono-label).

ARMILU: Abstract Representation for Multi-Intent SLU

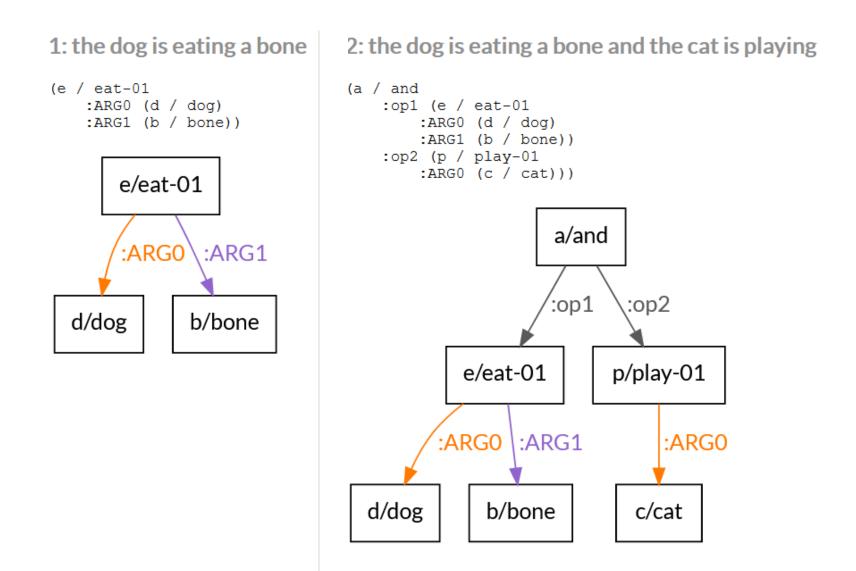
• ARMILU

Inspired by recent works in semantic analysis to predict the Abstract Meaning Representation (AMR) format (L. Banarescu and al., "Abstract Meaning Representation for Sembanking," 2013)

• Transcription of AMR analysis to Penman formalism (R. T. Kasper, "A flexible interface for linking applications to Penman's sentence generator," 1989)

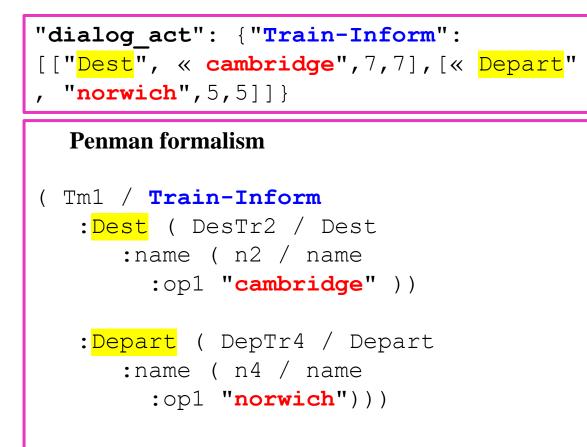
Producing a linear representation of a graph structure using parentheses and variables to express relations and concepts

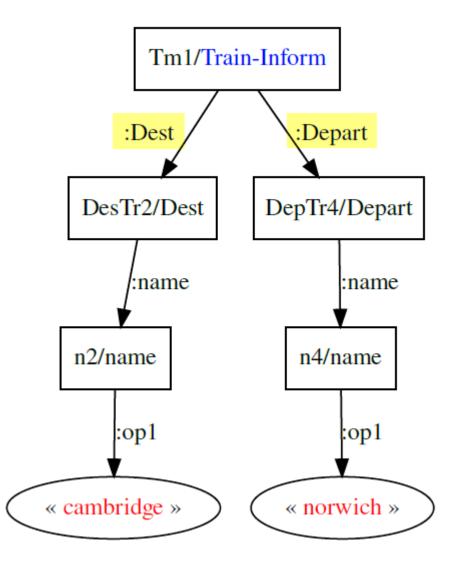
AMR with Penman



ARMILU: Mono-Intent

"I need train reservations from **norwich** to **cambridge**"





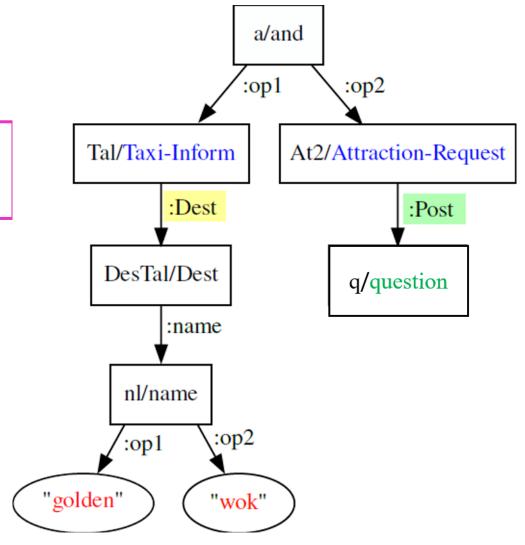
ARMILU: Multi-Intent

"Can I get the postcode for that I also need to book a taxi to the **golden wok**"

"dialog_act": {"Taxi-Inform": [["Dest","golden
wok« , 17,18]], "Attraction-Request":
 [["Post", "?"]]}

```
Penman formalism
(a / and
  :op1 (Ta1 / Taxi-Inform
  :Dest (DesTa1 / Dest
        :name (n1 / name
        :op1 "golden"
        :op2 "wok")))

:op2 (At2 / Attraction-Request
  :Post (q / question)))
```



Orange Restricted

Models' implementation

- Abstract graph generation
 - Seq2seq model to generate directly the Penman linear representation
 - AMRlib library with the mt5 model
 - Specific module that guarantees graph consistency
 - Train from scratch

"Can I get the postcode for that I also need to book a taxi to the **golden wok**"

Penman formalism
(a / and
:op1 (Ta1 / Taxi-Inform
: <mark>Dest</mark> (DesTa1 / Dest
:name (n1 / name
:op1 " golden "
:op2 "wok")))
:op2 (At2 / Attraction-Request
:Post (q / question)))

Context aware SLU

• Augmenting the input of the models with the previous turns (user and system)

✤Multi-label flat BIO:

- [CLS] Utt_{t-2} Utt_{t-1} [SEP] Utt_t
- The context is labeled with \bigcirc

Convlab flat BIO:

[CLS] Utt_{t-3} Utt_{t-2} Utt_{t-1} [SEP] Utt_t

♦Generative model:

• [USER] Utt_{t-2} [SYS] Utt_{t-1} [SEP] Utt_t

Evaluation Method

- Comparable evaluations regardless of the projection approach:
 - Each system's output was projected to the formalism Intent(Slot, Value)
 - I need to make sure it's cheap and I need parking
 - ✤ Semantic Frame annotation

```
{"Hotel-Inform":[["Parking", "yes"], ["Price", "cheap", 7,7]] }
```

- **♦** Formalism for evaluation
 - ✤ [Hotel-Inform (Parking, yes), Hotel-Inform(Price, cheap)]
- Compare the list of *Intent(Slot, Value)* elements in reference and in the predictions of the various systems
- Metrics
 - **F1-score** at the *Intent*, *Slot* and *Intent(Slot, Value)* levels
 - Global accuracy evaluation: all the elements of utterances must be recognized

Results

Without Context	Multi- label BIO	Convlab BIO	ARMILU graph
Intent F1	91.5	91.9	92.0
(Slot, Value) F1	93.6	93.7	94.0
Intent (Slot,Value) F1	89.6	90.2	89.9
Global accuracy	81.0	81.6	82.3

With Context	Multi- label BIO	Convlab BIO	ARMILU graph
Intent F1	95.6	95.5	95.9
(Slot, Value) F1	94.7	94.6	94.9
Intent (Slot, Value) F1	94.0	94.1	94.2
Global accuracy	86.5	86.6	87.4

Results

Without Context	Multi- label BIO	Convlab BIO	ARMILU graph	With Context	Multi- label BIO	Convlab BIO	ARMILU graph
Intent F1	91.5	91.9	92.0	Intent F1	95.6	95.5	95.9
(Slot, Value) F1	93.6	93.7	94.0	(Slot, Value) F1	94.7	94.6	94.9
Intent (Slot,Value) F1	89.6	90.2	89.9	Intent (Slot, Value) F1	94.0	94.1	94.2
Global accuracy	81.0	81.6	82.3	Global accuracy	86.5	86.6	87.4

- Comparable results for Intent and (Slot, Value) F-scores.
- ✤ Global accuracy is slightly higher for the ARMILU approach
 - Graph based approach is better at predicting semantic structures spanning the whole turn.

Results

Without Context	Multi- label BIO	Convlab BIO	ARMILU graph	With Context	Multi- label BIO	Convlab BIO	ARMILU graph
Intent F1	91.5	91.9	92.0	Intent F1	95.6	95.5	95.9
(Slot, Value) F1	93.6	93.7	94.0	(Slot, Value) F1	94.7	94.6	94.9
Intent (Slot,Value) F1	89.6	90.2	89.9	Intent (Slot, Value) F1	94.0	94.1	94.2
Global accuracy	81.0	81.6	82.3	Global accuracy	86.5	86.6	87.4

Better results with introducing the context in all levels for all systems

Contrastive Experiments: Different partitions of MultiWOZ

• Partitions according to several criteria related to potential difficulty levels

Utterances with negation marks (*not*, *n*'t) vs utterance without negation marks

- Utterances with implicit values (*dontcare, yes, no*), no value (*none*) and other *normalized* values without span vs all the others
- Interrogative sentences (value ?) vs no Interrogative values
- Utterances with Multi-label (*Multi Intent+Slot*) vs Mono-label
- ✤First utterance of each conversation (*commands for the system*) vs the others (need *the context*)

Contrastive Experiments: Different partitions of MultiWOZ

	Nég	ation	Implici	t values	Value	«?»	Multi	-label	1st utte	rances
nb of samples	+ (470)	- (6902)	+ (574)	- (6798)	+ (1499)	- (5837)	+ (3417)	- (3667)	+ (1000)	- (6372)
Multi- label BIO	64.7	88.0	54.7	89.2	76.7	89.0	80.2	92.2	91.6	85.7
ARMILU graph	68.3	88.7	58.2	89.9	78.7	89.7	81.5	93.0	91.7	86.8

global accuracy

Contrastive Experiments: Different partitions of MultiWOZ

	Nég	ation	Implici	t values	Value	«?»	Multi	-label	1st utte	rances
nb of samples	+ (470)	- (6902)	+ (574)	- (6798)	+ (1499)	- (5837)	+ (3417)	- (3667)	+ (1000)	- (6372)
Multi- label BIO	64.7	88.0	54.7	89.2	76.7	89.0	80.2	92.2	91.6	85.7
ARMILU graph	68.3	88.7	58.2	89.9	78.7	89.7	81.5	93.0	91.7	86.8

> ARMILU projection model is better on all the potentially difficult configurations.

> Important improvements for implicit values and for utterances with negations.

> Abstract representations can help going beyond classical span based slot/value utterances.

Contrastive Experiments: First utterances and proportion of span-based values

	Nég	ation	Implici	t values	Value	«?»	Multi-	label	1st utte	rances
nb of samples	+ (470)	- (6902)	+ (574)	- (6798)	+ (1499)	- (5837)	+ (3417)	- (3667)	+ (1000)	- (6372)
Multi- label BIO	64.7	88.0	54.7	89.2	76.7	89.0	80.2	92.2	91.6	85.7
ARMILU graph	68.3	88.7	58.2	89.9	78.7	89.7	81.5	93.0	91.7	86.8

- **88%** of slots with a span vs **60.8%**
- 1.4 slots per utterance on average vs 1.0

> Predicting span-based values is challenging in a generative framework

Contrastive Experiments: SNIPS dataset

	Statistics
#User utterances	14 484
#intents	7
#Slots	39
#domains	7
#Domain- Act+Slot	53

Mono-labels

- 100% of slots with explicit span based values
- 2.6 slots per utterance on average

- Intents are transformed to domain-Intent:
 Music-AddToPlaylist
- Projection to Penman formalism

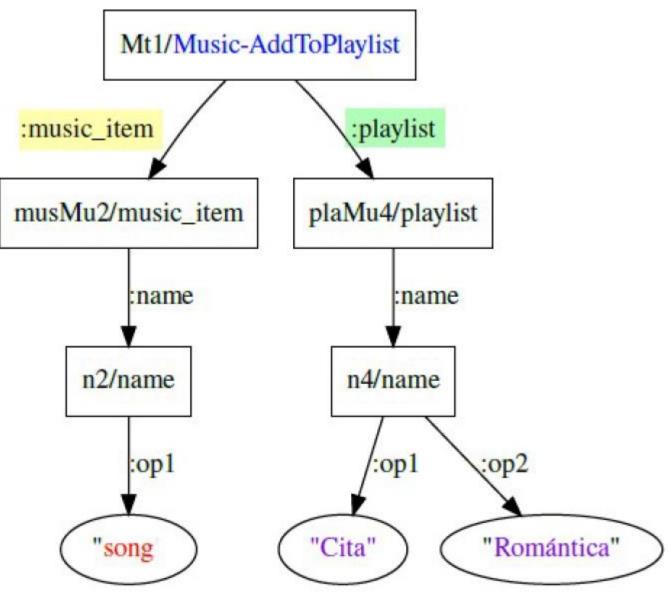
Contrastive Experiments: SNIPS dataset

Text: "Add another song to the Cita Rom'antica playlist"

```
( Mt1 / Music-AddToPlaylist
```

```
:music_item ( musMu2 / music_item
:name ( n2 / name
:op1 "song"))
```

```
:playlist ( plaMu4 / playlist
  :name ( n4 / name
    :op1 "Cita"
    :op2 "Romántica")))
```



Contrastive Experiments: SNIPS dataset

- BIO encoding with sequence tagging remains more efficient on the overall.
- the lack of training corpus for some slot labels
- hallucinations occurring in slot values.
 - Text: Add *millie corretjer* to the rhythm playlist
 - Hyp: "milie korrekter"

	Multi- classifica tion BIO	ARMILU graph
Intent F1	98.9	99.0
(Slot, Value) F1	96.3	95.3
Intent (Slot,Value) F1	96.2	95.1
Global accuracy	91.4	88.9

K. Raman, I. Naim, J. Chen, K. Hashimoto, K. Yalasangi, and K. Srinivasan, "Transforming sequence tagging into a seq2seq task," 2022

Input <extra_id_0> Add</extra_id_0>	<extra_id_1> Kent</extra_id_1>	<extra_id_2> James</extra_id_2>	<extra_id_3> to</extra_id_3>	<extra_id_4> the</extra_id_4>	<extra_id_5> Disney</extra_id_5>	<extra_id_6> soundtrack</extra_id_6>
Target <extra_id_0> O</extra_id_0>	<extra_id_1> ARTIST</extra_id_1>	<extra_id_2> I-ARTIST</extra_id_2>	<extra_id_3> O</extra_id_3>	<extra_id_4> O</extra_id_4>	<extra_id_5> PLAYLIST</extra_id_5>	<extra_id_6> O</extra_id_6>

> Only flat BIO single Intent and non contextual SLU

K. Raman, I. Naim, J. Chen, K. Hashimoto, K. Yalasangi, and K. Srinivasan, "Transforming sequence tagging into a seq2seq task," 2022

	SOTA mBERT BIO	SOTA seq2seq BIO
Perfect %	86.57	90.1
F1 CoNLL	93.66	95.5

- **Perfect**: the % of times an example is parsed perfectly
- **F1 CoNLL** : slots + all the values are correct

K. Raman, I. Naim, J. Chen, K. Hashimoto, K. Yalasangi, and K. Srinivasan, "Transforming sequence tagging into a seq2seq task," 2022

	SOTA mBERT BIO	SOTA seq2seq BIO
Perfect %	86.57	90.1
F1 CoNLL	93.66	95.5

- Perfect: the % of times an example is parsed perfectly
- F1 CoNLL Micor: slots + all the values are correct

	mBERT BIO	ARMILU graph
concept accuracy	91.4	88.9
F1 Micro concepts	96.3	95.4

- Very close results in F1 level
- SOTA Seq2seq is better than ARMILU
 > less hallucination problems
 > Only flat BIO single Intent

Discussion

- New paradigm to project semantic annotations for SLU into an abstract graph and structured representation
- ARMILU exploits the Penman formalism also used for AMR
- Important improvements on more complex utterances thanks to the advantage of powerful seq2seq generative models
- More complex semantic annotations for dialogue
- Highly variable values remains challenging for the generative model

Perspectives

- Perform the module to handle corpora with slots of explicit based values
 - ATIS, DjingoSpeaker, etc.
- Ablation studies:
 - Flat BIO seq2seq models on dialog datasets
 - Generate directly the origin annotations
- Other learning methods like Zero/Few shot learning
 - New ontology
 - New domains/Intents
- AMR analysis for new semantic structures