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Interpretability Recap: Why?

Definitions on Interpretability:
e Mechanism to understand our models? (features, parameters, training schemes)
e Process in which we uncover/understand the hidden structure of data.
e Right of an explanation of a prediction for a model and a given input.

Lipton, 2018

Why is Interpretability Desired:

e Science constrained bubble vs real world applications.
e Accountability and Responsibility.
e Right of an explanation for a decision.




Interpretability Recap: Transparency - Posthoc

Algorithm 1: Interpretable gradient loss
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Post-Hoc Explanations
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Class Activation Maps
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(Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016)




Why Class Activation Maps?
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Feature visualization of ¢ lutional net trained on ImageNet from [Zeiler & Fergus 2013]




The Many Flavours of CAM

The CAM family of methods can be seen as a cake too:

» “Pure” Reinforcement Learning (cherry)
» The machine predicts a scalar reward given once in a
while.

How Much Information is the Machine Given during Learning o ak ] yc i
© Z

» A few bits for some samples

» Supervised Learning (icing)
» The machine predicts a category or a few numbers
for each input
» Predicting human-supplied data S
» 100,000 bits per sample N

P Self-Supervised Learning (cake génoise)
» The machine predicts any part of its input for an
observed part.
» Predicts future frames in videos
» Millions of bits per sample

The taste of a cake can be determined by the flavour of the
frosting you add to it.

Available at: https://t.co/BZZacTW4|O



https://t.co/BZZgcTW4jO

Grad-CAM

A generalization of CAM

Now the weighting coefficient is obtained from the gradients flowing backwards from the
classification layer. (Rumelhart, Hinton, & Williams, 1986) (Springenberg, Dosovitskiy, Brox,
& Riedmiller, 2014)

Some networks don’t have a simple classifier: i.e. VGG, thus having a CAM representation is
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not easy to achieve.

Selvaraju et al., 2016



Layer-CAM

o Answer to the question of Grad-CAM answers on non semantic layers
o Now we don’t take into consideration the last convolution before the classifier-
o One convolution per layer can be taken into consideration.
o Arepresentation of the pyramidal structure of the network is built.

lmage Stagel Stage2 Stage3 Stage4 Stage5 Fusion
Jiang, Zhang, Hou, Cheng, & Wei, 2021




Grad-CAM++

e Use of a combination of the positive partial derivatives of the last

convolutional layer’s feature maps w.r.t. an specific class score as weights.
o Improved localization and sharper activation maps.
o Better robustness towards more objects on the image
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Grad-CAM++: Interpretable Metrics

Faithfulness in image Recognition

o Average Drop
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o Increase in Confidence
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Grad-CAM++: Interpretable Metrics

Harnessing Explanations for Object Loc

LC

o Loc at threshold
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Smooth Grad-CAM++

e Coming from purely gradient based methods.

e Introducing noise to denoise gradients:
o Activation functions like ReLU don’t operate properly on small neighborhoods.
o Away of improving gradient computation to get better weighting coefficients.
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Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017




Score-CAM

What if we remove the need of gradients and focus on increasing the model’s
confidence?

C(AF) = F(x o s(Up(AF))) — F(x) Wang, Du, Yang, & Zhang, 2019



CAM constraints.

e CAM takes on an specific convolutional layer to get insight into the network,
many more layers could be looked upon. (Layer CAM)

e Activation Map size on semantic level matters.

e We want insight on the network’s decision process, not solely on the
groundtruth responses.




CAM currently: Novel Ideas

LFI-CAM
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Lee, Park, Oh, & Kwak 2021

Taylor CAM
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Lerman, Xu, Venuto, & Kautz, 2020




Novelty Penalizations.

Interpretability is a buzz word, alike snake oil.

What?, How?, Why? How does it compare?

Current approaches do not present Interpretable metrics!
Interpretability is often seen as an ablation to a recognition/localization
method, not a main point.




What can we do with CAM?

e \We have observed a switch of the paradigm with Score-CAM removing the
reliance on gradients.

e Conversely, the way in which we compute weights is not finite; thus
CAM-methods could have a limit on utilization of network parameters.

e Training a neural network with CAM as attention could yield good results.

e \We can a different method to yield good explanations on terms with metrics.

Metrics still present a point of debate.

Transformers are beyond the scope of today’s talk.




Recommended reading

Ablation CAM.(Desai & Ramaswamy, 2020)

Integrated Gradients (Sundararajan, Taly, & Yan, 2017)
Smoothed Score-CAM. (Naidu & Michael, 2020)

Jacobgil's Pytorch CAM library (Gildenblat & contributors, 2021)



https://github.com/jacobgil/pytorch-grad-cam
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