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Interpretability Recap: Why?
Definitions on Interpretability:

● Mechanism to understand our models? (features, parameters, training schemes)
● Process in which we uncover/understand the hidden structure of data.
● Right of an explanation of a prediction for a model and a given input.
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Lipton, 2018

Why is Interpretability Desired:

● Science constrained bubble vs real world applications.
● Accountability and Responsibility. 
● Right of an explanation for a decision.



Interpretability Recap: Transparency - Posthoc 
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Transparency

On the model On the training

Gradient Activations

Post-Hoc Explanations



Class Activation Maps 

4

CNN cat

GAP Linear

General Equation

(Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016)



Why Class Activation Maps?
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“cat”



The Many Flavours of CAM
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The CAM family of methods can be seen as a cake too:

The taste of a cake can be determined by the flavour of the 
frosting you add to it.

Available at: https://t.co/BZZgcTW4jO

https://t.co/BZZgcTW4jO


Grad-CAM

● A generalization of CAM
○ Now the weighting coefficient is obtained from the gradients flowing backwards from the 

classification layer.  (Rumelhart, Hinton, & Williams, 1986) (Springenberg, Dosovitskiy, Brox, 
& Riedmiller, 2014)

○ Some networks don’t have a simple classifier: i.e. VGG, thus having a CAM representation is 
not easy to achieve.
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Layer-CAM

● Answer to the question of Grad-CAM answers on non semantic layers
○ Now we don’t take into consideration the last convolution before the classifier-
○ One convolution per layer can be taken into consideration.
○ A representation of the pyramidal structure of the network is built.
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Jiang, Zhang, Hou, Cheng, & Wei, 2021



Grad-CAM++

● Use of a combination of the positive partial derivatives of the last 
convolutional layer’s feature maps w.r.t. an specific class score as weights.

○ Improved localization and sharper activation maps.
○ Better robustness towards more objects on the image
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Chattopadhyay, Sarkar, Howlader, & 
Balasubramanian, 2017



Grad-CAM++: Interpretable Metrics
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○ Increase in Confidence

○ Win(%)

Faithfulness in image Recognition

○ Average Drop



Grad-CAM++: Interpretable Metrics
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Harnessing Explanations for Object Loc

○ Proportion

○ Loc at threshold



Smooth Grad-CAM++

● Coming from purely gradient based methods.
● Introducing noise to denoise gradients:

○ Activation functions like ReLU don’t operate properly on small neighborhoods.
○ A way of improving gradient computation to get better weighting coefficients.

12Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017



Score-CAM

What if we remove the need of gradients and focus on increasing the model’s 
confidence?
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C

Wang, Du, Yang, & Zhang, 2019



CAM constraints.

● CAM takes on an specific convolutional layer to get insight into the network, 
many more layers could be looked upon. (Layer CAM)

● Activation Map size on semantic level matters.
● We want insight on the network’s decision process, not solely on the 

groundtruth responses.
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CAM currently: Novel Ideas

LFI-CAM
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Taylor CAM
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Lee, Park, Oh, & Kwak 2021 Lerman, Xu, Venuto, & Kautz, 2020



Novelty Penalizations.

● Interpretability is a buzz word, alike snake oil.
● What?, How?, Why? How does it compare?
● Current approaches do not present Interpretable metrics!
● Interpretability is often seen as an ablation to a recognition/localization 

method, not a main point.
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What can we do with CAM?

● We have observed a switch of the paradigm with Score-CAM removing the 
reliance on gradients.

● Conversely, the way in which we compute weights is not finite; thus 
CAM-methods could have a limit on utilization of network parameters.

● Training a neural network with CAM as attention could yield good results.
● We can a different method to yield good explanations on terms with metrics.
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Metrics still present a point of debate.

Transformers are beyond the scope of today’s talk.



Recommended reading
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● Ablation CAM.(Desai & Ramaswamy, 2020) 
● Integrated Gradients (Sundararajan, Taly, & Yan, 2017)
● Smoothed Score-CAM. (Naidu & Michael, 2020)
● Jacobgil’s Pytorch CAM library (Gildenblat & contributors, 2021)

https://github.com/jacobgil/pytorch-grad-cam
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