Assessing the ability of neural language models to abstract syntactic representations

JTT, April 14, 2022

 Bingzhi Li
 Guillaume Wisniewski
 Benoît Crabbé

 bingzhi.li@yahoo.com
 Image: Comparis Cite
 Image: Comparis Cite

 Image: Comparis Cite
 Image: Comparis Cite
 Image: Comparis Cite

language model : a probability distribution over sequences of tokens

Research question

★ Are neural networks essentially recognizing superficial patterns or are they capable of abstracting more general rules ?

- ★ More interpretable and accountable models
- ★ Novel insights into linguistic theory and human generalization

Part I

Do language models learn syntax?

RNN LSTM (Long short-term memory)

Incremental Transformers

Long-distance agreement as evidence for syntactic structure

(Linzen et al 2016; Gulordava et al.2018; Goldberg 2019)

Les **bureaux** en métal [qu'il a vus dans la rue]_{RC} **sont** ... Les **bureaux** en métal [qu'il a **vus** dans la rue]_{RC} sont ... **cue** target-pp target-V

Two agreement tasks:

- subject-verb across object relative clause
- Object-past participle

Number Agreement Tasks in French

- Surface form: very similar
- Distinct linguistic analysis:
 subject-verb: ignore embedded clause
 object-past participle: detect filler-gap pattern

LSTM* & Incremental Transformers trained on 80M words of Wikipedia

	#sentences	LSTMs	Transformers
object–verb	68,794	82.1%	94.6%
subject–verb	27,582	94,3%	98,9%

High prediction accuracies across the board

- Transformers: consistently much better
- Accuracy subject-V > object-pp

Les **bureaux** en métal [qu'il a **vus** dans la rue]_{RC} sont beaux. **cue** target-pp target-V

- → Identifying "bureaux" as **agreement controller**
- → Memorising "bureaux" as **1st noun**

But ... Right for the Wrong reason?

Les **bureaux** en métal [qu'il a **vus** dans la rue]_{RC} sont beaux.

Heuristic	Precision			
	obj-pp	sub-verb		
first noun in the prefix	69.5%	83.7%		
last noun in the prefix	88.6%	77.5%		
last token with a mark of number in the prefix	60.3%	66.9%		
majority number expressed in the prefix	70.0%	75.9%		
noun before <i>que</i>	95.7%	91.6%		
LSTM	82.1%	94.3%		
Transformer	94.6%	98.9%		

Do models learn **more than heuristics**?

Task difficulty measured by count of heuristics

Principle

- More heuristic matching the target number, easier the prediction
- Count of heuristics as a proxy of task difficulty

Examples

- 5 heuristics (4)Si les idées⁽¹⁾(5) que ces mots(2) représentent(3) est*/sont easiest
- •

0 heuristic Ce soir les hommes que j'ai postés sur la route que doit suivre le roi prendra*/prendront ...

hardest

С	onstructions size in sentences		LSTMs	Transformers	
S	ubject-verb ac	ross object	relative clause		
	overall	27,582	$94.9_{\pm 0.8}$	$98.9_{\pm 0.1}$	
	5 heuristics	14,708	$98.9_{\pm 0.2}$	$99.6_{\pm 0.1}$	
	4 heuristics	3,799	$96.2_{\pm 0.7}$	$98.9_{\pm 0.1}$	
	3 heuristics	4,189	$92.4_{\pm 1.3}$	$98.4_{\pm 0.1}$	
	2 heuristics	3,166	86 _{±2}	$97.6_{\pm 0.3}$	
	1 heuristic	1,451	$81.4_{\pm 3.2}$	96.6 _{±0.3}	
	0 heuristic	269	$74.1_{\pm 4.3}$	$94.2_{\pm 1.2}$	

Results: Object-Verb Agreement

Construction	S in ser	size INSTMs		Transformers		
Object past participle						
overall	6	8,497 8	$31.7_{\pm1.4}$	94.6 _{±0.4}		
5 heuris	tics 3	2,149 9	6.6 _{±0.6}	99.3 _{±0.05}		
4 heuris	tics 12	2,711 8	5.2 _{±1.7}	96.3 $_{\pm 0.3}$		
3 heuris	tics	9,159 6	9.9 _{±3.0}	$91.7 _{\pm 0.5}$		
2 heuris	tics 10	0,621 5	8.7 _{±3.9}	87.4 _{±0.8}		
1 heuris	tic	2,870 3	6.2 _{±5.1}	76.9 _{±2.3}		
0 heuris	tic	987 3	8.8 _{±4.4}	73.8 _{±2.3}		

- Performance degrades with task difficulty
- accuracy subject-verb > object-verb
- Transformers generalize beyond heuristics

Part II

How Distributed are Distributed Representation?

Observation: Transformers generalize beyond superficial heuristics

Question: How transformers represents the required syntactic information?

- → Distributed all over the sentence (Klafka and Ettinger 2020)
- → Distributed locally around the agreement elements

Hypothesis: Model's internal representations encode a linguistic property (the number of the cue)

Task: Train a classifier to predict the property from the representations

Evaluation: Accuracy reflects how well the property is encoded

plural Les bureaux en métal [qu'il a vus dans la rue]_{RC} sont beaux.

- Each sentence is labelled with the cue's number: sing/plur
- Observation: token representation built by transformers (last layer)
- Train a logistic regression classifier:

mapping token representation \rightarrow sentence label

Probing Results

Sans	doute	les	bureaux	qu'	il	а	vus	dans	la	rue		
No	doubt	the	desk	that	he	has	seen	in	the	street		
			Δ	Ver	20	red	Ac	cura	cv			
			/		۵Ę	,cu	7.0	cura	<u> </u>			
		object-past participle subject-verb										
prof			50	<u>л</u> 0	/				6	0 10	/	
prei		59.4% 02.1%										
cont	ext	94.4%					9	3.6%	6			
suffi	x		71	6%	6				7	9.5%	6	

Similar pattern: number information encoded locally when relevant

Part III

Is the Agreement Decision Syntactically-motivated?

Observation:

- Transformers are able to predict number agreement with high accuracy
- Number information is mainly distributed between the cue and target

Question: How transformers actually used the encoded information?

➤ correlation ≠ causation

Are Transformers Decisions Syntactically Motivated?

Two hypotheses (not mutually exclusive)

Transformers based its prediction on:

- > Tokens involved in the agreement rules
 - cue and 'que'
 - o cue
- > All tokens between the cue and the target

How to answer such a question:

- Many tools/ approach (Woodward 2003, Pearl et Mackenzie 2018):
 - \rightarrow counterfactual reasoning/intervention

Main idea

Causal explanation between if X and Y:

changing X will change Y

 \rightarrow causal intervention on self attention

Method: Causal Intervention on Self-attention

 Contextualized representation: when predicting the target, model attend all previous words

Method: Causal Intervention on Self-attention

- Contextualized representation: when predicting the target, Model attend all previous words
- Counterfactual representation: when predicting the target, do not look at token 'que'

Measure change in behavior after intervention

Masking Results for Object-Verb Agreement

Masked tokens	Precision		
none	94.6%		
$cue \oplus \mathit{que}$	66.9%		
cue	71.4%		
que	78.8%		
all context tokens except $cue \oplus que$	87.1%		

- number information present across all tokens of context
- but Transformers decisions rely mainly on cue and que

Compared with Subject-Verb Agreement

Masked tokens	asked tokens Precision		
	obj-pp	sub-verb	
none	94.6%	98.9%	
cue \oplus <i>que</i>	66.9%	86.0%	
cue	71.4%	89.1%	
que	78.8%	96.7%	
all context tokens except cue \oplus que	87.1%	82.0%	

- number information present across all tokens of context
- masking 'que' has little effect on subject-verb agreement

Masking 'que' intervention

Subsets	sub	j-verb	ob	obj-pp		
	original	mask-que	original	mask-que		
5 h	99.6%	99.1%	99.3%	95.9%		
4 h	99.0%	96.5%	96.3%	85.3%		
3 h	98.4%	93.4%	91.7%	63.9%		
2 h	97.7%	91.5%	87.4%	49.4%		
1 h	96.8%	94.1%	76.9%	32.1%		
0 h	94.1%	89.3%	73.8%	30.8%		

 masking 'que' cause below than chance level performance on object-pp agreement

Masking 'que' intervention

Subsets	sub	j-verb	ob	obj-pp		
	original	mask-que	original	mask-que		
5 h	99.6%	99.1%	99.3%	95.9%		
4 h	99.0%	96.5%	96.3%	85.3%		
3 h	98.4%	93.4%	91.7%	63.9%		
2 h	97.7%	91.5%	87.4%	49.4%		
1 h	96.8%	94.1%	76.9%	32.1%		
0 h	94.1%	89.3%	73.8%	30.8%		

• same distribution of 'number information'

different prediction mechanism

Conclusions

Incremental transformers LM are capable of

- abstracting syntactic representations (though not perfectly)
- basing their predictions on linguistically motivated cues

Open Questions

- ➤ Frequency bias
- ➤ Semantic cues

