Dialogue State Tracking: past, present, and future

Léo Jacqmin PhD candidate at Aix-Marseille University and Orange

Dialogue Systems

From fiction to reality

- in popular culture
 - 2001: A Space Odyssey (1968)
 - Her (2013)
- today's adoption
 - virtual assistants (Alexa, Siri et al.)
 - \circ chatbots

HAL 9000

Dialogue Systems

Conversational agents: long-standing goal of Al

- Turing test (1950)
- rule-based chatbots: ELIZA (1964)

Motivation

- language/speech: natural interface for human-computer interactions
- open-domain dialogue vs. task-oriented dialogue

Different Goals

Task-oriented dialogue

- designed for specific domains or tasks, e.g. hotel reservation, customer service, or technical support
- shorter is better

Open-domain dialogue

- chit-chat
- maximize long-term user engagement

Different Approaches

Task-oriented dialogue

- modular system: hand-crafted or trained on task-specific labeled data
- pre-defined task-specific schema: set of user intents, each intent defines a set of dialog acts, slot-value pairs

Open-domain dialogue

- end-to-end neural response generation
- grounding on open-domain knowledge

Task-oriented Dialogue Systems

Dialogue State

User: hello, i'm looking for a restaurant with fair prices

Dialogue State : Inform (price range = moderate)

Sys: There are 31 places with moderate price range. Can you please tell me what of food you would like?

User: well I want to eat in the North, what's up that way?

Dialogue State: Inform (price range=moderate, area=north)

Sys: I have two options that fit that description, Golden Wok chinese restaurant and The Nirala which serves Indian food. Do you have a preference?

User: Can I have the address and phone number for the Golden Wok chinese restaurant? Dialogue State: Inform (price range=moderate, area=north) request (address, phone number)

Dialogue State Tracking

Estimate dialogue state s_t as slot-value pairs at turn t

• Turn-level vs. dialogue level prediction

Challenging task

- large variation in the users
- noisy environment
- → Difficult to understand what the user wants but essential for successful dialogue

DST (rough) Timeline

- 1. Rule-based systems (pre-2000)
- 2. Generative approaches (2000s)
 - $\circ b(s_t)$
- 3. Discriminative approaches (2010s)
 - $\circ \ P(s_t | o_1, ..., o_t)$
- 4. Neural approaches (~2015 onwards)

Rule-based Systems

Update rule maps from an existing state s_{t-1} and the 1-best SLU result o_t to a new state s_t

- requires no data to implement
- accessible method to incorporate knowledge of the dialog domain

Shortcomings

- costly and difficult to maintain
- unable to make use of the entire ASR N-best or SLU M-best lists
 - → do not account for uncertainty

Generative Approaches

Model dialogue as a **Partially Observable Markov Decision Process**

- maintain a Markov dialogue state in each turn and choose next action based on this state
- model observations from the SLU jointly with the dialogue state using Bayesian inference

Advantages

- reduce cost of hand-crafting complex dialogue managers
- robustness against the errors created by speech recognition

POMDP-Based Statistical Spoken Dialog Systems: A Review (Young et al., 2013)

Discriminative Approaches

Directly model the class posteriors given the observations

• $b(s_t) = P(s_t | f_1, ..., f_t)$, where $f_1, ..., f_t$ are features extracted from the ASR, SLU, and dialog history

Main appeal

• any classification paradigm can be applied once the sequence of observations f_1, \ldots, f_t is turned into a fixed-length summary representation

Discriminative methods for statistical spoken dialogue systems (Henderson, 2015)

Separate SLU

- SLU decoders to detect slot-value pairs expressed in ASR output
- DST model combines this information with the past dialogue context to update the belief state

Joint SLU and DST

- word-based DST paradigm
- ASR predictions as input and belief states as output

Datasets and Evaluation Metrics

Dialogue State Tracking Challenge (DSTC)

First shared testbed and evaluation metrics for DST (2013)

- Each instance
 - released a public corpus of transcribed and labeled dialogs along with baseline trackers and evaluation tools
 - $\circ\,$ explored a new aspect of DST
- rebranded as Dialog System Technology Challenges since DSTC-6

Data Collection

Simulation-based	Wizard-of-Oz
machine-to-machine	human-to-human (crowd- sourced)
restricted task complexity and language diversity	natural and diverse dialogs
annotations obtained automatically	difficult data annotation

Metric	Datasets								
	DSTC2	DSTC3	WoZ2.0	MultiWoZ	Frames	SGD	M2M	TreeDST	
# Dialogues	3235	2236	1200	10438	1369	22825	120000	27280	
# Turns	51002	35723	8824	143048	19986	463282	1661536	167507*	
Avg. turns / dial.	15.77	15.98	7.35	13.7	14.60	20.30	13.85	6.14*	
Avg. tokens / turn	8.47	10.82	11.27	13.18	12.60	9.86	9.96	7.59*	
# Unique tokens	1178	1873	3562	30245	13864	45578	2315	7936*	
# Slots	8	13	7	29	60	339	5	289	
# Values	85	118	88	2180	4508	25123	92	5687	

Evaluation Metrics

- Joint Goal Accuracy
- Requested Slots F1
- Time Complexity

Neural Approaches

Static Ontology DST Models

Predict from a fixed set of slot-values

Advances

- Delexicalization
- Data-driven DST
- Parameter sharing
- Encoders based on pre-trained LM

Delexicalization

e.g. I want Chinese food - I want F.VALUE F.SLOT

- counter imbalanced training data for slot-values
- treats all slots using the same model parameters
 - allow transfer learning between slots
- relies on exact string matching to detect slot-value mentions
 - listing potential rephrasings for all slot values (semantic lexicon)
 → not scalable

Data-driven DST

Delexicalization requires additional manual feature engineering

Move past the word-based delexicalisation paradigm

• word vectors as sole building blocks for language understanding models

Neural belief tracker: Data-driven dialogue state tracking (Mrkšić et al., 2017)

Parameter Sharing

Neural belief tracker: separate encoder for each slot
→ inefficient

StateNet, a DST model sharing the parameters for all slots

- combine an n-gram input feature representation with a slot representation
- LSTM to encode them into a single vector
- value representation compared with the encoded vector to obtain score for each slot-value

Towards Universal Dialogue State Tracking (Ren et al., 2018)

Encoders based on pre-trained LM

- using BERT to encode slots, user input, and slot-values
- input representation compared with slot-value representation

a moderately priced modern European food . [SEP]

Dynamic Ontology DST Models

Predict from a possible open set of slot-values

Advances

- Copy and pointer networks
- Categorical and non-categorical slot-values
- Schema-guided models
- Function-based update

Copy and Pointer Networks

Transferable Multi-Domain State Generator (Wu et al., 2019)

Categorical and Non-Categorical Slot-Values

Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking (Zhang et 31

Schema-guided Models

- schema-guided dataset (Rastogi et al., 2020)
- standard schema to be adopted for all domains
- flexibility to incorporate new domains

service_name: "Payment" Service description: "Digital wallet to make and request payments"

name: "account_type" categorical: True **Slots** description: "Source of money to make payment" possible_values: ["in-app balance", "debit card", "bank"]

name: "amount" categorical: False description: "Amount of money to transfer or request"

name: "contact_name" categorical: False description: "Name of contact for transaction"

name: "MakePayment"Intentsdescription: "Send money to your contact"required_slots: ["amount", "contact_name"]optional_slots: ["account_type" = "in-app balance"]

name: "RequestPayment" description: "Request money from a contact" required_slots: ["amount", "contact_name"]

Function-based Update

Efficient Dialogue State Tracking by Selectively Overwriting Memory (Kim et al., 2020)

Challenges and Future Directions

Need for DST models that are

• Generalizable

- $\circ\,$ to new domains / languages
- $\circ\,$ without requiring new annotated data

• Robust

- $\circ\,$ to longer dialogues and small variations in input
- to challenges posed by spoken language

• Efficient

- $\circ\,$ in representing and updating the dialogue state
- $\circ\,$ resulting in better overall task-oriented dialogue performance

Generalizable

Domain Adaptation

Use of pre-trained models coupled with domain or task specialization

- task-adaptive pre-training
 - specialization corpora specific to task-oriented dialogues seem to be more useful than open-domain dialogues
- designing self-supervised objectives that can produce better representations of dialogues for the downstream task
 - e.g. response selection

Few-shot / Zero-shot Transfer Learning

Learn DST for a new domain or a new language given a much smaller in-domain corpus, or potentially no new annotated data

Two lines of work:

- cross-domain transfer learning (cross-lingual)
- cross-task transfer: leverage machine reading question answering (QA) data

Extractive Question: which team won super bowl 50? **Context:** super bowl 50 champion denver broncos defeated carolina panthers to earn their third super bowl title.

Multi-Choice Question: mr smith's son is studying _ now. Choices: [sep] in town [sep] at home [sep] in a hall. Context: mr smith goes to the town to see his son, tom. tom is studying music in a school there.

Extractive Question: where did super bowl 50 take place? **Context:** super bowl 50 champion denver broncos defeated carolina panthers to earn their third super bowl title.

QA training DST zeroshot

Extractive Question: what is the stars of the hotel? **Context:** user: i am looking for a 5 stars hotel that offers free parking.

Multi-Choice Question: does the user want to have parking?. Choices: [sep]yes[sep]no[sep]dontcare Context: user: i am looking for a 5 stars hotel that offers free parking.

Extractive Question: what is the name of the hotel? **Context:** user: i am looking for a 5 stars hotel that offers free parking.

Zero-Shot Dialogue State Tracking via Cross-Task Transfer (Lin et al. 2021)

Lifelong Learning

Learning new knowledge or skills through time sequentially

- 1. Adding slots to DST
- 2. Adding new domains

Without retraining with all data, the model should be able to accumulate knowledge

Robust

Long Dialogues

The longer a dialogue is, the less accurate dialogue state trackers are Can be attributed to:

- datasets containing longer term dependencies and spanning multiple contexts
- when the previous belief state is used to infer the current one: error propagation
- when the whole dialogue context is used to infer the current belief state: difficulty in distinguishing the relevant information in a longer context

DialogStitch: Synthetic Deeper and Multi-Context Task-Oriented Dialogs (Kottur et al. 2021)

Robust Models

To user inputs

- linguistic variation
- adversarial human attacks and uncooperative users, e.g. offensive behavior
- disfluencies and ungrammatical utterances (cfr. DATCHA corpus)

To speech inputs

- speech recognition errors
- data augmentation
- DSTC-10 Track 2 dataset: dev and test sets containing n-best ASR output (24.09% WER at 1-best)
- → Need for diverse datasets that represent real-world challenges

Efficient

Beyond slot-filling: towards better dialogue state representations

Limitations of flat dialogue state representations:

- knowledge isn't directly shared across slots, e.g. a city can be an origin or a destination
- no handling of composition, e.g. "directions to my next meeting"

Alternatives exist

Graph

Dialog states as rooted relational graphs to encode compositionality

Hi can you book me a flight to Paris please.

user.flight.book.object.equals
 .destination.equals.location.equals.Paris
 Sure when and where will you depart?

Sure, when and where will you depart?

system.prompt.flight.book.object.equals

.source

.departureDateTime

Queries

SQL query as a dialogue state

 Q_2 : Which of those dorms have a TV lounge? INFORM_SQL

- S2 : SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS
 T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON
 T2.amenid = T3.amenid WHERE T3.amenity_name = `TV
 Lounge'
- A_2 : (Result table with many entries)
- R_2 : This shows the names of dorms **CONFIRM_SQL** with TV lounges.

Data-flow

Executable program as state

Agent: It's in Conference Room D.

Critical aspects of DST models

Slot status prediction

- crucial component of DST models
 - experiments with oracle slot status
- majority of slots are inactive resulting in a class imbalance problem

→ Improving the *"none"* value slot accuracy has the potential to increase the overall DST performance by a large margin

Modelling inter-slot relationships

Slots are not conditionaly independent

• dependencies across domains

Using graph models to capture relationships between slots

2) Graph Attention Networks

Knowledge-Aware Graph-Enhanced GPT-2 for Dialogue State Tracking (Lin et al. 2021)

Dialogue state update

Potentially better ways than generating dialogue state from scratch or a simple rule-based update

- function-based update
 - SOM-DST: state operation to selectively update slot values at each turn
- prevent error propagation

Integrating the different dialogue modules

- does improved DST performance translate to better overall dialogue system performance (e.g. better task success rate)?
- end-to-end task-oriented dialogue
 - input: user utterance
 - output: system response

Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance (van Nieke513

Thank you