OLISIA: a Cascade System for Spoken Dialogue State Tracking

Lucas Druart, Léo Jacqmin Benoit Favre, Lina M. Rojas-Barahona, Valentin Vielzeuf

Background

Task-Oriented Dialogue System

Task-Oriented Dialogue System: Spoken Dialogue

Dialogue State Tracking

 U_0 : I need a hotel with wifi in the north part of town.

 A_1 : I can help with that. What kind of price range do you have in mind?

 U_1 : I am open as far as price range, but I would love a 4 star place.

• • •

Dialogue state S_1 : hotel-area = north, hotel-wifi = yes DST S_2 : hotel-area = north, hotel-wifi = yes, hotel-price range = don't care, hotel-stars = 4...

Common Approaches

Fixed ontology

MultiWOZ Dataset

- No. dialogues: 8438 / 1000 / 1000 (train/dev/test)
- 7 domains:

train, hotel, restaurant, etc.

- 25 slots
- Avg. turns / dialogues: 13.7

MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling (Budzianowski et al., 2018)

DSTC11 Track 3

Speech-Aware Dialog Systems Technology Challenge

Motivation

- Recent work on task-oriented dialogue systems focused on chat corpora
- Recently, renewed interest in spoken dialogue systems
- Current systems trained on written corpora face robustness issues associated with spoken dialogue, such as ASR errors and disfluencies

Challenge

Released a spoken version of MultiWOZ (2.1)

- Evaluate task-oriented dialog systems end-to-end, from users' spoken utterances to inferred slot values
- Focused on DST since it is more impacted by the switch from written to audio input than response generation
- Modified dev and test sets:
 - New values introduced to encourage generalization for slots:

hotel-name, restaurant-name, train-departure, train-destination

• Time mentions offset by a constant amount

3 Versions

- TTS Verbatim: train, dev & test
- Human Verbatim: dev & test
- Human Paraphrased: test

Evaluation

Joint Goal Accuracy

 $JGA = \frac{C}{N_t} = \frac{No. of correct dialogue state predictions}{No. of turns}$

Slot Error Rate

 $SER = \frac{S+D+I}{N_s} = \frac{No. of slot \, errors}{No. of slots in reference}$

Our Participation

System Architecture

Cascade system

- ASR to transcribe user turns
- DST with text as input

End-to-end system

• Difficulties fusioning speech and text

System Architecture

Whisper Large¹ to transcribe user turns + adaptations:

- Reranking => did not improve much
- Time normalization [hour]:[minutes] [am|pm]
- Value correction
 - i. Named Entity Recognition on user and agent turns
 - ii. Scoring of each pair of user and agent named entity with Character Error Rate
 - iii. If score below tuned threshold
 - Then replace the mispelled user turns' named entities with their match from agent turn
 - Otherwise leave unchanged

DST

```
[user] I'm looking
for somewhere in
Dublin to have a meal
and a drink. [agent]
What kind of food do
you want to eat?
[user] I feel like a
burger.
```


DST Data Augmentation

Value replacement

- Create a new ontology to sample from based on data from OpenStreetMap
- For all dialogues
 - i. Go through each dialogue state, sample one value from ontology for each distinct value and replace it in the dialogue state
 - ii. Track these replacements with a mapping between replaced value and new value
 - iii. Based on the obtained mapping, perform a string replacement in the dialogue context

DST Data Augmentation

Results

Primary submission (OLISIA₁)

Ensemble through majority voting of five T5-large models fine-tuned on different variations of the train set

Secondary submission (OLISIA₂)

Single T5-large model fine-tuned on best train set

Joint Goal Accuracy

Slot Error Rate

JGA	Dev		Test		
	TTS-v	Human-v	TTS-v	Human-v	Human-p
Challenge baseline	26.3	22.6	_	_	_
OLISIA ₂	44.1	40.3	40.4	36	34.3
OLISIA ₂ (text oracle)	55		51.1		-

ASR Cascade Adaptations

Metrics: JGA↑ / WER↓

Test set

	TTS-Verbatim	Human-Verbatim	Human-paraphrased
Whisper raw outputs	37.9 / 4.92	33.8 / 8.40	32.0 / _
+ Time normalization	40.0 / 4.49	35.6 / 7.89	33.5 / _
+ Noun correction	40.3 / 4.36	36.1 / 7.71	34.3 / _

DST Data Augmentation

Metric: JGA

Test set

	TTS-Verbatim	Human-Verbatim	Human-paraphrased
Default train set	32.2	28.3	26.8
+ Value replacement	40.2	35.5	33.2
+ Speech simulation	40.3	36.0	34.3
+ Paraphrasing	37.3	33.9	31.5

Model Size

ASR

DST

Ensembling strategy

Metric: JGA

Dev set

	TTS-verbatim	Human-verbatim
1 model (no ensemble)	44.1	40.2
5 models - same train set	44.4	40.4
5 models - different train sets	47.8	43.5
9 models - different train sets	48.5	43.9

Contribution

We show

- the impact of scaling up the model size (both for ASR and DST)
- the relevance of different data augmentation techniques for DST
- the need for post-processing the ASR output in a cascade system

What's next?

- Multimodal model: encoding both speech and text
- Comparison between cascade and end-to-end systems for spoken DST
- Encoding n-best ASR hypotheses with Transformer

Thanks!