Models and Resources for Attention-based Unsupervised Word Segmentation

An Application to Computational Language Documentation

Marcely Zanon Boito September 30, 2021

Laboratory: LIG, University Grenoble Alpes (2017-2021)

Supervisors: Laurent Besacier (UGA and Naver Labs Europe) Aline Villavicencio (Sheffield University, UK)

Before that...

Master Degree in Artificial Intelligence and Web (MoSIG, FR); Double Degree in Computer Science (UFRGS, BR) and Information Systems Engineering (ENSIMAG, FR).

And now...

Postdoctoral Researcher in Low-resource Speech-to-Text Translation SELMA Project - LIA Lab - Avignon University

This presentation agenda:

1. Introduction:

The field: Computational Language Documentation **The task:** Unsupervised Word Segmentation (UWS) from speech

- Our Contribution: An attention-based pipeline for UWS from speech
 PART 1: Attention for segmentation
 PART 2: Speech discretization in low-resource settings
- 3. Conclusion

Introduction

Language Documentation

- → 50 to 90% of the currently spoken languages will go extinct before 2100 [1]
- Manually documenting all these languages is infeasible

Figure: A field linguist recording utterances from a native speaker.

Computational Language Documentation (CLD)

- → 50 to 90% of the currently spoken languages will go extinct before 2100 [1]
- Manually documenting all these languages is infeasible

Figure: A field linguist recording utterances from a native speaker.

GOAL: to automatically retrieve information about language structures to speed up language documentation

Approaches for CLD: Documentation Corpora

- → Small size (difficult to collect)
- → Often lack written form (oral-tradition languages)
- Parallel information (translations instead of transcriptions)

Approaches for CLD: Documentation Corpora

- → Small size (difficult to collect)
- → Often lack written form (oral-tradition languages)
- → Parallel information (translations instead of transcriptions)

Therefore, CLD approaches need to...

- 1. Deal with speech
- 2. Be robust to low-resource
- 3. Incorporate bilingual (or multilingual) annotations

UNSUPERVISED WORD SEGMENTATION (UWS) from speech

Example: Let's imagine the speech utterance for "Hello my friend".

UNSUPERVISED WORD SEGMENTATION (UWS) from speech

We want a system which outputs time stamps corresponding to boundaries.

Literature in (monolingual) UWS

- → The UWS task is more often solved in the symbolic domain (grapheme or phonemes) [3,4,5,6]
 - Transcribing one minute of audio takes on average one hour and a half of work from a trained linguist [38]

- → For speech, there's mostly research on Unsupervised Term Discovery, which produces a partial segmentation of the speech signal [7-9]
 - Focus of Zero Resource Speech Challenge these last years [36,37]

What we propose: Grounding Segmentation on Translations

Our system outputs segmentation based on...

What we propose: Grounding Segmentation on Translations

Our system outputs segmentation based on... sentence-level translations.

Grounding Segmentation on Translations

In this setting, all our boundaries have an annotation: the bilingual information aligned.¹

Accommodates the challenge of processing speech in low-resource settings by first creating an unsupervised discretization of the signal

PART 1 A Bilingual Attention-based UWS Model

Corresponding publications:

- Empirical Evaluation of Sequence-to-Sequence Models for Word Discovery in Low-resource Settings. Boito et al. INTERSPEECH 2019.
- Investigating Alignment Interpretability for low-resource NMT. Boito et al. Machine Translation Journal: Special Issue on Machine Translation for Low-resource Languages. Springer Netherlands 2021.

Towards Bilingual Supervision

- Sequence-to-sequence (seq2seq) models interfaced with attention emerged as popular solutions for a variety of NLP tasks:
 - Automatic Speech Recognition [24,25] (Source: speech, Target: text)
 - Text-to-Speech Synthesis [22,23] (Source: text, Target: speech)
 - Neural Machine Translation [12,15,16] (Source: text/speech, Target: text)

Towards Bilingual Supervision

Neural Machine Translation (NMT) models

- → Trained with bilingual datasets
- Attention Layer captures the *importance* of source tokens for generating each target token
- Posterior to training, the output of this layer can be visualized

Towards Bilingual Supervision

Neural Machine Translation (NMT) models

Producing Bilingual Alignment and Segmentation

Producing Bilingual Alignment and Segmentation

Producing Bilingual Alignment and Segmentation

Bilingual UWS: Research Questions

R1. Can we use the **soft-alignment probability matrices** learned during NMT training for segmentation in low-resource settings?

R2. What is the impact of the **type of attention mechanism**?

R3. What is the impact of **dataset** size?

R4. What is the **language** impact? Not presented here, but investigated in Boito et al. [13] (Chapter 4, Section 2)

Experimental Settings

R1. Can we use the soft-alignment probability matrices learned during NMT training for segmentation in low-resource settings?

- → We start from the topline performance expected for a speech discretization model: the true phones in the target language.
- We compare our model against a strong (monolingual) baseline dpseg¹[3]. This baseline is a monolingual approach for UWS, very robust in low-resource.

Experimental Settings: 3 different NMT models

R2. What is the impact of the **type of attention mechanism**?

NMT Models (1): RNN

Global attention from Bahdanau et al. 2015 [12]

Attention appears in the form of **context vectors** for each decoder step *t*.

Computed using the set of source annotations H and the last state of the decoder network s_{t-1} (translation context).

The align layer is a feed-forward neural network trained jointly.

NMT Models (2): Transformer

Multi-head attention from Vaswani et al. 2017 [15]

From a pair of key-value vectors and a query vector, the **attention layer** produces the weighted sum.

Weights computed by **Scaled dot-product (SDP) Attention** for each head.

Multi-head attention: SDP for several heads.

NMT Models (3): 2D-CNN

Pervasive attention from Elbayad et al. 2018 [16]

Source and target sequences are encoded jointly. This acts as an **attention-like mechanism**, since individual source elements are re-encoded as the output is generated.

Attention weight tensor α is computed from the last activation tensor H_L , to pool the elements of the same tensor along the source dimension.

Experimental Settings: 3 different NMT models

R2. What is the impact of the **type of attention mechanism**?

→ RNN: Global Attention [12]

The attention layer creates context vectors for weighting each target token.

→ Transformer: Multi-head Attention [15]

Multiple *attentions* in parallel (heads) capture different equivalence functions between sequences.

→ 2D-CNN: Pervasive Attention [16]

Joint encoding acts as an attention-like mechanism. Source elements are re-encoded as the output is generated.

Experimental Settings: 3 datasets

R3. What is the impact of **dataset** size?

(**MB-FR**) Mboshi-French parallel corpus [17] documentation dataset; tailored sentences

5,130 sentences (4h of speech) from the documentation of Mboshi, an unwritten language spoken in Congo-Brazzaville.¹

¹For comparison, the original Transformer NMT model was trained on 4.5 million parallel sentences

Experimental Settings: 3 datasets

R3. What is the impact of **dataset** size?

(MB-FR) Mboshi-French parallel corpus [17]

documentation dataset; tailored sentences

(EN-FR) English-French parallel corpus [18]

librispeech augmentation in French; noisy aligned information (filtered)

Data impact

analysis

	33K	EN-FR (1)	
\checkmark	5K	EN-FR (2)	MB-FR (3)

Experimental Settings: Evaluation

We evaluate it using tolerance windows.¹

¹The tolerance window we use is defined on the Zero Resource Challenge 2017 Track 2.

What about the alignment quality?

How do we evaluate this without having gold (word-level) alignment information?

In a more practical sense: Are all three of these good for our task?

Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE)

- Intuition: sharper alignments are more informative.
- Soft-alignment probability matrix: one probability distribution per line (target symbol)

Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE)

For every line in the matrix we compute normalized entropy (NE).

$$NE(t_i, s) = -\sum_{j=1}^{|\boldsymbol{s}|} P(t_i, s_j) \cdot \log_{|\boldsymbol{s}|} (P(t_i, s_j))$$

Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE)

For every line in the matrix we compute normalized entropy (NE). We average over sets of distributions.

$$NE(t_i, s) = -\sum_{j=1}^{|\boldsymbol{s}|} P(t_i, s_j) \cdot \log_{|\boldsymbol{s}|} (P(t_i, s_j))$$
$$ANE(t, s) = \frac{\sum_{i=1}^{|\boldsymbol{t}|} NE(t_i, s)}{|\boldsymbol{t}|}$$

Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE)

Alignment Assessment with AVERAGE NORMALIZED ENTROPY (ANE)

To summarize the quality of the soft-alignment probability matrices produced by a given NMT model using a given dataset

42

We are able to train models in very low-resource settings, scoring some points behind the **dpseg baseline** (77.1 for MB). (R1)

The **RNN-based model** performed the best in our setting. (**R2**)

JG

We can see the impact of data reduction, but some models are more sensitive to it than others. **(R3)**

Models with lower Corpus ANE
reached better segmentation
results (negative Pearson's
correlation relationship).
(alignment assessment)

JG.

RNN CNN Transformer F-score 77.1 80 74.0 71.3 70.4 68.2 66.4 70 60 55.9 52.7 52.5 50 40 **Corpus ANE Corpus ANE Corpus ANE** 30 20 0.38 0.56 0.18 0.41 0.73 0.68 0.42 0.58 0.59 10 **EN 33K** EN 5K MB 5K Figure: Boundary F-score Results averaged over 5 runs [19]

How to choose a head from Transformer? [20,21]

→ We reported results using corpus ANE for selecting the head.

We also experimented with:

 \rightarrow

- Models from 1 to 3 layers
 - 1, 2 and 4 heads

Intra- and inter-layer averaging

We showed that we are able to apply this pipeline for bilingual segmentation starting from a perfect discretization for the speech

We now focus on generating real speech discretization in low-resource settings

PART 2 Speech Discretization for UWS

Corresponding publications:

- Unsupervised Word Segmentation from Speech With Attention. Boito et al. INTERSPEECH 2018.
- Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings. Boito et al. ArXiv 2021.

Exploitable SD models for Low-Resource UWS

Speech Discretization (SD) models produce a sequence of discrete speech units representing input utterances with no access to transcriptions [26-30]

Exploitable SD models for Low-Resource UWS

Speech Discretization (SD) models produce a sequence of discrete speech units representing input utterances with no access to transcriptions [26-30]

What do we expect from our discretization process?

- → The model needs to work well in low-resource.
- → The model needs to output a **concise representation**:
 - The baseline dpseg cannot deal with sequences longer than 350 units
 - Our models can accommodate longer sequences, but it impacts performance (challenging alignment)

SD for Bilingual UWS: Research Question

R5. Can we directly use the output of SD models as input for our bilingual UWS approach in low-resource settings?

Speech Discretization Models: Bayesian Generative Models

- → Very efficient in low-resource settings
- \rightarrow Similar to a phone-loop model:
 - Each unit is modeled by an HMM/GMM
 - The prior distribution over all HMMs is modeled by a Dirichlet Process
- → Models:
 - 1. HMM/GMM (HMM) [26]: Every possible sound can be a unit
 - 2. Subspace HMM (SHMM) [27]: Prior over a phonetic subspace
 - **3.** Hierarchical Subspace HMM (H-SHMM) [28]: Subspace adaptation from different languages for phone prediction

Speech Discretization Models: Vector Quantization (VQ) Models

- Novel approaches for speech processing, popular in high-resource settings.
- → Models:
 - VQ-Variational Auto-Encoder (VAE) [29]: inspired by dimensionality reduction architectures

Speech Discretization Models: Vector Quantization (VQ) Models

- → Models:
 - 1. VQ-VAE [29]: inspired by input dimensionality reduction architectures
 - 2. VQ-WAV2VEC [30]: inspired by self-supervised models trained with a context-prediction loss

Encoder (X→Z)
 Quantizer (Z→Z')
 Aggregator (Z'→C)

UGA Université Grenoble Alpes

Experimental Settings

- → We train all models with only 4 hours of speech. We focus on generating concise representations.
 - Bayesian Models
 - HMM/GMM (HMM)
 - Subspace HMM (SHMM)
 - Hierarchical Subspace HMM (H-SHMM)
 - VQ Neural Models
 - VQ-VAE
 - VQ-WAV2VEC (V16)
 - VQ-WAV2VEC (V36)

Trained on 4 hours of Mboshi data!

Statistics Over the Produced Sequences

Figure: Average Sequence Length for SD models

Figure: Vocabulary (# units) for SD models

Statistics Over the Produced Sequences: Bayesian Models

- → The Bayesian models produce a more concise output, closer to the reference
- → They also produce a similar number of units (excluding H-SHMM)

Figure: Average Sequence Length for SD models

Figure: Vocabulary (# units) for SD models

Statistics Over the Produced Sequences: VQ Neural Models

→ In order to reduce the length of the representation generated by VQ-based models, we are forced to also reduce the phone vocabulary.

Figure: Average Sequence Length for SD models

Figure: Vocabulary (# units) for SD models

Studying the SD Representation

Example: The same sentence, two approaches

- \rightarrow 6 setups for SD:
 - Bayesian Models: HMM, SHMM, H-SHMM
 - VQ Neural Models: VQ-VAE, VQ-WAV2VEC (V=16), VQ-WAV2VEC (V=36)

Best NMT model: RNN from Bahdanau et al. [12]

Bilingual UWS from Speech: Results

- → Results for Mboshi
- → 5 models, 6 setups
 - **1.** HMM
 - 2. SHMM
 - 3. H-SHMM
 - 4. VQ-VAE
 - 5. VQ-W2V V=16
 - 6. VQ-W2V V=36

Figure: Boundary UWS F-score results for the different SD models, using the MB-FR dataset. The result is the average over 5 runs.

Bilingual UWS from Speech: Results

- We notice a drop in performance, but we still successfully generate segmentation (R5)
- We are competitive against dpseg. Why?
 - The bilingual information might be helping us for this noisier setup

Figure: Boundary UWS F-score results for the different SD models, using the MB-FR dataset. The result is the average over 5 runs.

Bilingual UWS from Speech: Results

 \rightarrow

Figure: Boundary UWS F-score results for the different SD models, using the MB-FR dataset. The result is the average over 5 runs.

Conclusion

- → We proposed a pipeline for CLD able to:
 - Process speech in low-resource settings
 - Incorporate bilingual information, generating bilingual links

- → We proposed a pipeline for CLD able to:
 - Process speech in low-resource settings
 - Incorporate bilingual information, generating bilingual links
- → In this process we:
 - Investigated different speech discretization approaches for UWS [32]
 - Bayesian models produce a better representation, due to their Acoustic Unit Discovery modeling

- → We proposed a pipeline for CLD able to:
 - Process speech in low-resource settings
 - Incorporate bilingual information, generating bilingual links
- → In this process we:
 - Investigated different speech discretization approaches for UWS [32]
 - Compared different attention-based NMT models in low-resource [19]
 - Found the following ranking: RNN > 2D-CNN > Transformer
 - Proposed a task-agnostic metric (ANE) for assessing quality in soft-alignment probability matrices

- → We proposed a pipeline for CLD able to:
 - Process speech in low-resource settings
 - Incorporate bilingual information, generating bilingual links

> In this process we:

- Investigated different speech discretization approaches for UWS [32]
- Compared different attention-based NMT models in low-resource [19]
- Achieved competitive results in a realistic scenario (only 5k sentences) against a strong monolingual baseline (dpseg).
 - While not shown here, this trend was also verified in 4 other languages: Finnish, Hungarian, Romanian and Russian.

Future Work

- Evaluation of the output of the system with linguists
 - Focus on the aligned annotation that the model produces

Future Work

- Evaluation of the output of the system with linguists
 - Focus on the aligned annotation that the model produces
- → Leveraging information inside the attention layer during training
 - Biasing the alignment discovered, similar to Garg et al. [36] and Godard et al. [37]

Future Work

- Evaluation of the output of the system with linguists
 - Focus on the aligned annotation that the model produces
- → Leveraging information inside the attention layer during training
 - Biasing the alignment discovered, similar to Garg et al. [36] and Godard et al. [37]
- Investigation of the attention mechanism in end-to-end speech translation models
 - If attention remains exploitable, we could perform UWS from speech

SELMA Consortium Project¹

 Investigation of the attention mechanism in end-to-end speech translation models

SELMA stands for Stream Learning for Multilingual Knowledge Transfer

- → Platform for journalists to browse multilingual data from colleagues
- → The goal is to develop speech technologies in 30 different languages, many of them low-resource
 - Speech Recognition;
 - Speech-to-Text Translation;
 - Speech-to-Speech Translation;
 - Speech and Textual Named Entity Recognition.

Bibliography

- [1] Austin, Sallabank. The Cambridge handbook of endangered languages. Cambridge University Press, 2011.
- [2] Adda et al. Breaking the unwritten language barrier: The BULB project. SLTU 2016.
- [3] Goldwater et al. A Bayesian framework for word segmentation: Exploring the effects of context. Cognition. 2009.
- [4] Kawakami et al. Learning to discover, ground and use words with segmental neural language models. ACL 2019.
- [5] Berg-Kirkpatrick et al. Painless unsupervised learning with features. NAACL 2010.
- [6] Liang et al. Online EM for unsupervised models. NAACL 2009.
- [7] Lee et al. Unsupervised lexicon discovery from acoustic input. ACL 2015.
- [8] Kamper et al. Unsupervised word segmentation and lexicon discovery using acoustic word embeddings. ACM 2016.
- [9] Lyzinski et al. An evaluation of graph clustering methods for unsupervised term discovery. Interspeech 2015.
- [10] Duong et al. An attentional model for speech translation without transcription. NAACL 2016.
- [11] Boito et al. Unwritten languages demand attention too! word discovery with encoder-decoder models. ASRU 2017.
- [12] Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015.
- [13] Boito et al. Investigating Language Impact in Bilingual Approaches for Computational Language Documentation. SLTU-CCURL WORKSHOP: LREC 2020.
- [14] Godard et al. Preliminary Experiments on Unsupervised Word Discovery in Mboshi. Interspeech 2016.
- [15] Vaswani et al. Attention is all you need. NeurIPS 2017.
- [16] Elbayad et al. Pervasive attention: 2D convolutional neural networks for sequence-to-sequence prediction. CoNLL 2018.
- [17] Godard et al. A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments. LREC 2018.
- [18] Kocabiyikoglu et al. Augmenting librispeech with french translations: A multimodal corpus for direct speech translation evaluation. LREC 2018.
- [19] Boito et al. Empirical Evaluation of Sequence-to-Sequence Models for Word Discovery in Low-resource Settings. Interspeech 2019.
 [20] Michel et al. Are Sixteen Heads Really Better than One? NeurIPS 2019.

Bibliography

[21] Voita et al. Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. ACL 2019.
 [22] Watanabe et al. Hybrid CTC/attention architecture for end-to-end speech recognition. IEEE Journal of Selected Topics in Signal Processing, 2017.

[23] Chorowski et al. Attention-based models for speech recognition. NeurIPS 2015.

[24] Wang et al. Tacotron: Towards end-to-end speech synthesis. Interspeech 2017.

[25] Shen et al. Natural TTS synthesis by conditioning wavenet on mel spectrogram predictions. ICASSP 2018.

[26] Ondel et al. Variational inference for acoustic unit discovery. Procedia Computer Science 2016.

[27] Ondel et al. Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery. Interspeech 2019.

[28] Yusuf et al. A Hierarchical Subspace Model for Language-Attuned Acoustic Unit Discovery. ICASSP 2020.

[29] Oord et al. Neural Discrete Representation Learning. NeurIPS 2017.

[30] Baevski et al. vq-wav2vec: Self-supervised Learning of Discrete Speech Representations. arXiv, 2019.

[31] Kamper and Nieker. Towards unsupervised phone and word segmentation using self-supervised vector-quantized neural networks. arXiv, 2020.

[32] Boito et al. Unsupervised Word Segmentation from Discrete Speech Units in Low-Resource Settings. ArXiv 2021.

[33] Boito et al. Investigating Alignment Interpretability for low-resource NMT. Machine Translation Journal: Special Issue on Machine Translation for Low-resource Languages. Springer Netherlands 2021.

[34] Boito et al. A small Griko-Italian speech translation corpus. SLTU 2018.

[35] Boito et al. MaSS: A large and Clean Multilingual Corpus of Sentence-aligned Spoken Utterances Extracted from the Bible. LREC 2020.

[36] Garg et al. Jointly Learning to Align and Translate with Transformer Models. EMNLP 2019.

[37] Godard et al. Controlling Utterance Length in NMT-based Word Segmentation with Attention. IWSLT 2019.

Models and Resources for Attention-based Unsupervised Word Segmentation

An Application to Computational Language Documentation

Marcely Zanon Boito September 28, 2021

