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Why are GPUs faster than CPUs for the matrix 
calculations of deep learning libraries?



1. The quick answer

2. The longer explanation
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1. The quick answer

GPUs have a higher peak performance than CPUs 
and they are well-adapted for matrix operations.
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Source: 
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/
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Source: https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664
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2. The longer explanation



The deal about parallelism

Example: finding an element in a sorted array

The simple way: O(n)

The binary search way: O(log n)

The parallel way: O(?)
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The deal about parallelism

Example: finding an element in a sorted array

The simple way: O(n)

The binary search way: O(log n)

The parallel way: O(1)

How?

With n resources, each cell is checked at the same time, and 
anyone that finds the element writes it in the output
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Different kinds of processing units

C is for central

Must be good for computing 
any kind of sequential task.

G is for graphics

Must be great for computing 
a bunch of pixels, triangles, 

etc.

9



Different kinds of processing units

C is for central

Must be good for computing 
any kind of sequential task.

G is for graphics

Must be great for computing 
a bunch of pixels, triangles, 

etc.

10



Different kinds of processing units

C is for central

Must be good for computing 
any kind of sequential task.

G is for graphics

Must be great for computing 
a bunch of pixels, triangles, 

etc.

11



Architectural differences

CPU

• Focused on latency
• A few cores
• Complex control
• Limited power 

GPU

• Focused on throughput
• Several cores
• Simple control
• High power consumption
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Architectural differences

CPU

• Focused on latency
• Large capacity
• Large caches
• Coherent caches

GPU

• Focused on bandwidth
• Small capacity
• Small caches
• Limited synchronization
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Parallelism and the Three Laws

Every design 
decision 

reflects how 
we handle 
parallelism
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Moore’s Law

“The number of transistors in chips doubles about every two years.”

This is still true.
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Source:  https://arxiv.org/abs/1911.11313



Moore’s Law

“The number of transistors in chips doubles about every two years.”

But the performance gains come mostly from parallelism now.
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Source: Computing Performance: Game Over or Next Level, IEEE Computer Magazine, January 2011, p. 33



Amdahl’s Law

“The performance gains from the parallelization of a fixed 
workload are limited by its sequential portion.” 

Time(n) = s*Time(1) + (1-s)*Time(1)/n,
for n: number of resources > 0, and s: sequential portion of the code in [0,1]

Only the most parallel codes can fully benefit from GPUs (strong scaling).
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Gustafson’s Law

“The size of a workload that can be computed in a fixed 
period of time is affected by its sequential portion.” 

Workload(n) = s*Workload(1) + (1-s)*Workload(1)*n,
for n: number of resources > 0, and s: sequential portion of the code in [0,1]

More resources mean bigger problems can be treated (weak scaling).
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About the 
matrix 

calculations



Matrix calculations

Features of 2D-matrix multiplications:

cij = Σk=1aikbkj

• Very common, optimized kernel
• Operations: O(n³)
• Data: O(n²)
• Operations per cell in C: O(n)
• Each cell can be computed 

independently
• Memory accesses are regular and 

have both spatial and temporal 
locality 20
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Matrix calculations

Features of convolutions:

• Very common operations in image processing (filtering)
• Similar to scalar products
• Each cell can be computed independently
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Matrix calculations

Features of convolutions:

• Very common operations in image processing (filtering)
• Similar to scalar products
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Matrix calculations

Features of tensor operations (and Tensor Cores):

D = AB + C
• Small matrix products and accumulations
• Can work with mixed-precision data
• Tensor Cores as dedicated hardware for these operations

23Source: https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/
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And remember:
GPUs have a higher peak performance than CPUs 
and they are well-adapted for matrix operations.


