Why are GPUs faster than CPUs for the matrix calculations of deep learning libraries?

Laércio Lima Pilla laercio.lima-pilla@labri.fr

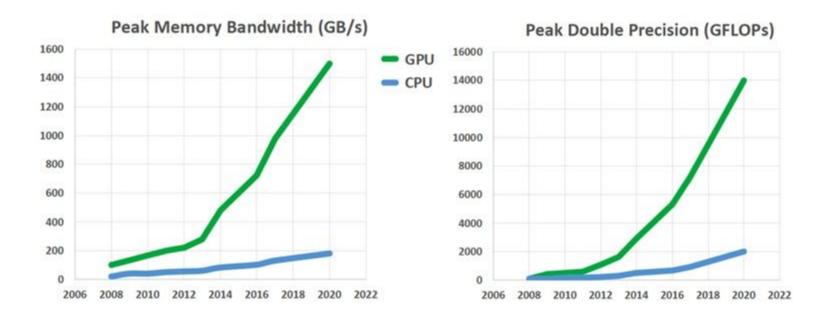
1. The quick answer

2. The longer explanation

1. The quick answer

1. The quick answer

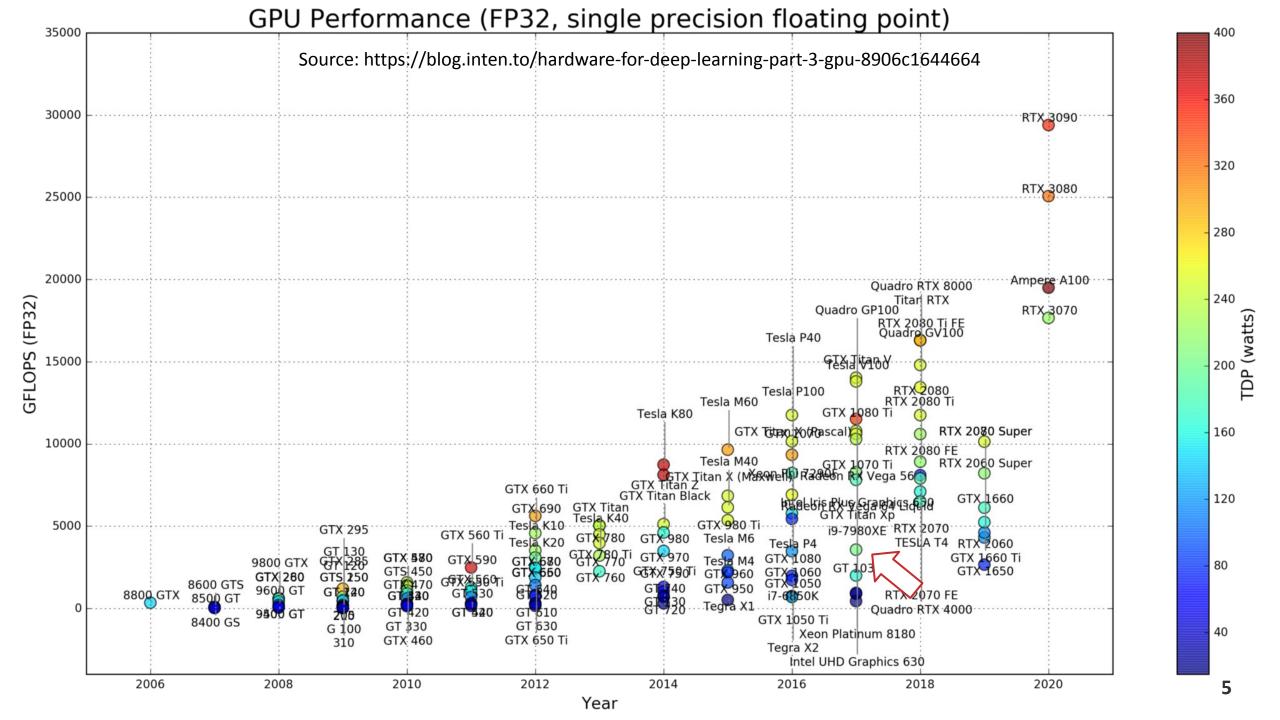
GPUs have a higher peak performance than CPUs and they are well-adapted for matrix operations.



Source:

CNIS

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/



2. The longer explanation

The deal about parallelism

Example: finding an element in a sorted array

1 1	2	3	5	8	13	21	34	55	
-----	---	---	---	---	----	----	----	----	--

The simple way: O(n) The binary search way: O(log n) The parallel way: O(?)

The deal about parallelism

Example: finding an element in a sorted array

1 1 2	3 5	8 13	21 3	4 55
-------	-----	------	------	------

The simple way: O(n) The binary search way: O(log n) The parallel way: O(1)

How?

With n resources, each cell is checked at the same time, and anyone that finds the element writes it in the output

Different kinds of processing units

C is for central

Must be good for computing any kind of sequential task.

G is for graphics

Must be great for computing a bunch of pixels, triangles, etc.

Different kinds of processing units

C is for central

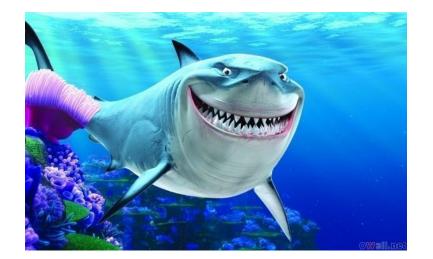
Must be good for computing any kind of sequential task.

G is for graphics

Must be great for computing a bunch of pixels, triangles, etc.

Different kinds of processing units

Must be good for computing any kind of sequential task.



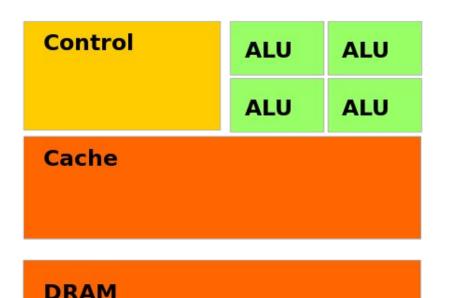
G is for graphics

Must be great for computing a bunch of pixels, triangles, etc.

Architectural differences

CPU

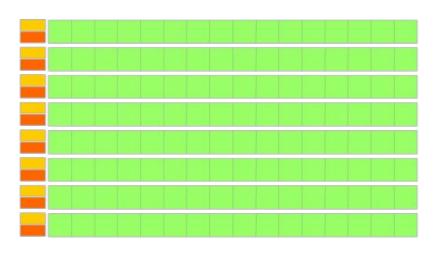
- Focused on latency
- A few cores
- Complex control
- Limited power



cnrs

GPU

- Focused on throughput
- Several cores
- Simple control
- High power consumption



DRAM

Architectural differences

CPU

- Focused on latency
- Large capacity
- Large caches

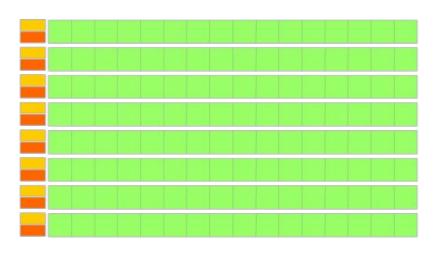
DRAM

Coherent caches

cnrs

GPU

- Focused on bandwidth
- Small capacity
- Small caches
- Limited synchronization

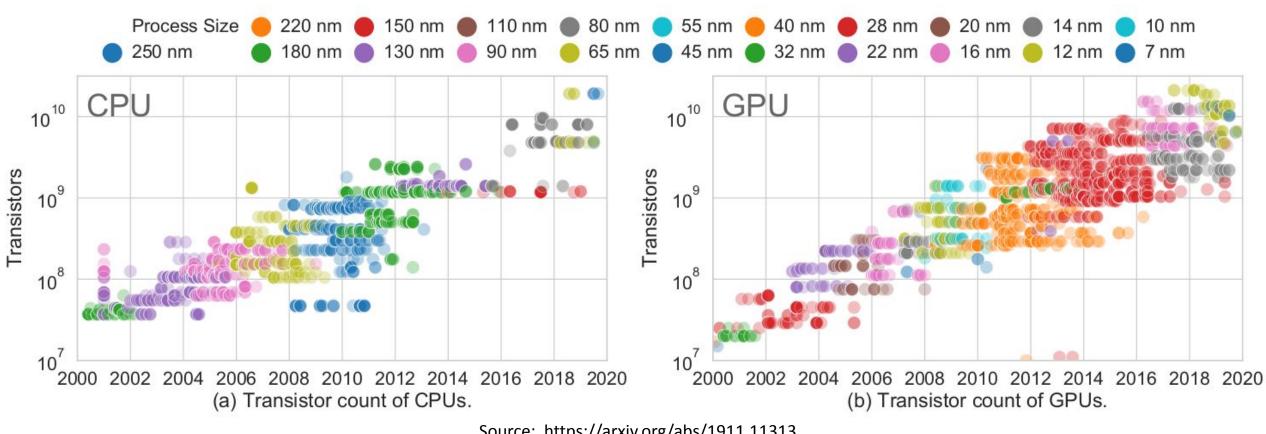


DRAM

Parallelism and the Three Laws

Every design decision reflects how we handle parallelism

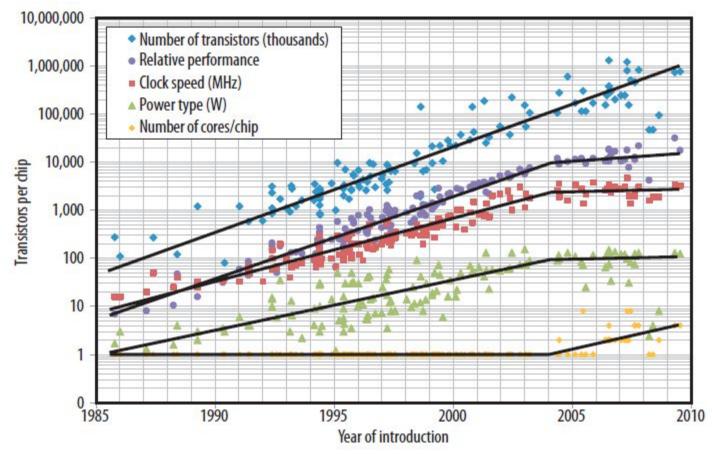
Moore's Law



Source: https://arxiv.org/abs/1911.11313

"The number of transistors in chips doubles about every two years." This is still true.

Moore's Law



Source: Computing Performance: Game Over or Next Level, IEEE Computer Magazine, January 2011, p. 33

"The number of transistors in chips doubles about every two years."

But the performance gains come mostly from parallelism now.

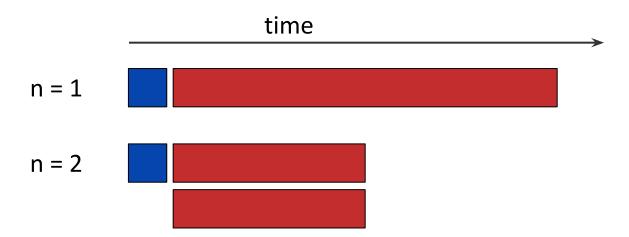
CNrs

Amdahl's Law

"The performance gains from the parallelization of a fixed workload are limited by its sequential portion."

Time(n) = s*Time(1) + (1-s)*Time(1)/n,

for n: number of resources > 0, and s: sequential portion of the code in [0,1]



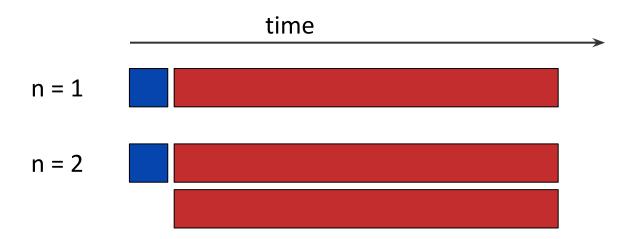
Only the most parallel codes can fully benefit from GPUs (strong scaling).

Gustafson's Law

"The size of a workload that can be computed in a fixed period of time is affected by its sequential portion."

Workload(n) = s*Workload(1) + (1-s)*Workload(1)*n,

for n: number of resources > 0, and s: sequential portion of the code in [0,1]



More resources mean bigger problems can be treated (weak scaling).

About the matrix calculations

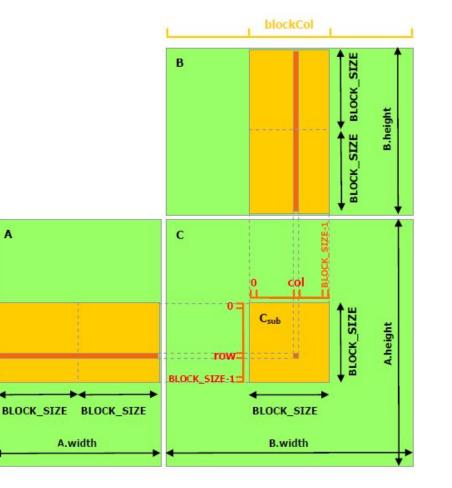
Features of 2D-matrix multiplications:

$$\mathbf{c}_{ij} = \boldsymbol{\Sigma}_{k=1}^{n} \mathbf{a}_{ik} \mathbf{b}_{kj}$$

- Very common, optimized kernel
- Operations: O(n³)
- Data: O(n²)

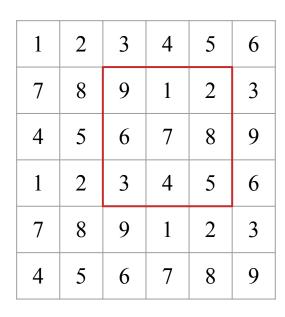
CN

- Operations per cell in C: O(n)
- Each cell can be computed independently
- Memory accesses are regular and have both spatial and temporal locality



Features of convolutions:

- Very common operations in image processing (filtering)
- Similar to scalar products
- Each cell can be computed independently

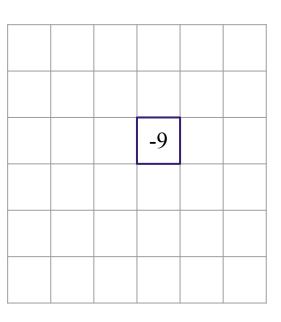


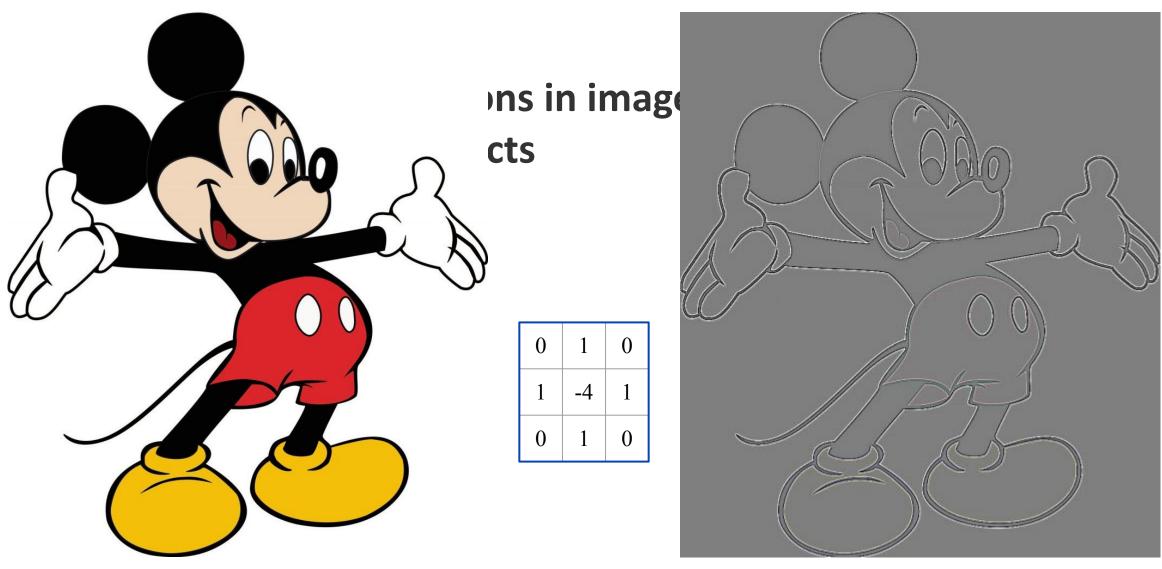
 \otimes

0	1	0
1	-4	1
0	1	0

=

9*0 + 1*1 + 2*0 + 6*1 + 7*-4 + 8*1 + 3*0 + 4*1 + 5*0 = -9



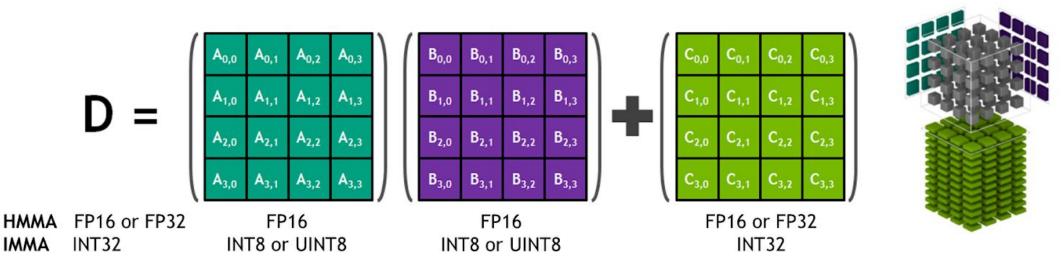


Features of tensor operations (and Tensor Cores): D = AB + C

- Small matrix products and accumulations
- Can work with mixed-precision data

CNIS

• Tensor Cores as dedicated hardware for these operations



Source: https://developer.nvidia.com/blog/nvidia-automatic-mixed-precision-tensorflow/

And remember:

GPUs have a higher peak performance than CPUs and they are well-adapted for matrix operations.

Laércio Lima Pilla laercio.lima-pilla@labri.fr

