Analyzing complexity factors for Spoken Language Understanding on benchmark and deployed service corpora

Rim Abrougui TGI/DATA&AI/AITT/Deskiñ

20/05/2021

INTRODUCTION

Context & Problems

- Spoken Language Understanding models, involving contextual embeddings, have achieved remarkable results.
- Some SLU benchmark corpora remain challenging and performance can be affected by many factors related to the data (size, quality, annotation, ambiguity, etc.)
- ➢ How can we measure the complexity of corpora?
- ➤ What are the complexity factors that still resists to Transformers-based-models?
- Can this complexity be predictable when dealing with a new corpora ?
- Can data be partitionned into several sets representing different sources and levels of complexity?

INTRODUCTION

Objectives

- Measure the quality of a corpus and understand why it is difficult or easy
- Identify complexity factors that can be applied to any SLU task regardless of language, topic or semantic model linked to a given corpus.
- See how the DJINGO_SPK corpus is positioned in relation to public corpora used in the state of the art.
 - Béchet, F., & Raymond, C. (2018). Is ATIS Too Shallow to Go Deeper for Benchmarking Spoken Language Understanding Models? Interspeech 2018, 3449-3453. <u>https://doi.org/10.21437/Interspeech.2018-2256</u>
 - Béchet, F., & Raymond, C. (2019). Benchmarking Benchmarks : Introducing New Automatic Indicators for Benchmarking Spoken Language Understanding Corpora. *Interspeech* 2019, 4145-4149. <u>https://doi.org/10.21437/Interspeech.2019-3033</u>
 - Bechet, F., Raymond, C., Hamane, A., Abrougui, R., Marzinotto, G., & Damnati, G. (2021). *Analyzing complexity factors for Spoken Language Understanding on benchmark and deployed service corpora*. 5.

Submission Interspeech 2021

APPROACHES: First Step

- 1. Select a set of corpora with concept's annotation in word level
- 2. Train independently a set of DNN models on the datasets for concept prediction
- 3. Labeling each token in the test part of corpora with labels according to **agreements** and **correctness**:
 - if all the models agree on the same prediction, then the tokens will have the label "Agreement" (A), otherwise, they belong to "No Agreement" (N)
 - if at least one algorithmic system predicts the correct label, then the tokens will have the label "Correct"
 (C), otherwise they belong to "Error" (E)

APPROACHES: First Step

4 Clusters

- AC: Agreement + Correct
- ♦ NC: No agreement + Correct

♦ AE: Agreement + Error

♦NE: No agreement + Error

i	word w_i	label(ref,u,i)	label(m ₁ ,u,i)	$label(m_2,u,i)$	cluster
1	find	0	0	0	AC
2	flights	0	0	0	AC
3	arriving	0	0	0	AC
4	new-york	B-to-city	B-to-city	B-from-city	NC
5	new-york	0	B-to-city	B-to-city	AE
6	next	B-date-arr	B-date-dep	0	NE
7	saturday	I-date-arr	I-date-dep	B-date-arr	NE

Béchet, F., & Raymond, C. (2019). Benchmarking Benchmarks : Introducing New Automatic Indicators for Benchmarking Spoken Language Understanding Corpora. *Interspeech 2019*, 4145-4149. <u>https://doi.org/10.21437/Interspeech.2019 3033</u>

2 levels of difficulty

- ✤ AC: Agreement + correct => easy samples (all tokens of a sample have the label AC)
- \clubsuit NCE: tous les autres exemples = > difficult samples (at least one token of a sample has the label NCE)

	Domain	Language	Collect Method	Annotation		
					Token	Label de référence
			Wizard approach		i'm	0
	Information		transcription of		traveling	0
ATIC	on flights,	English	recordings. Some	Annotation with semantic frames (Intent	to	0
ALIS	airlines,	English	automatic	BIO encoding	Dallas	B-toloc.city_name
	airports		approaches were	C C	from	0
			version of ATIS		Philadelphia	B- fromloc.city_name

 Tur, G., Hakkani-Tur, D., & Heck, L. (2010). What is left to be understood in ATIS? 2010 IEEE Spoken Language Technology Workshop, 19-24. https://doi.org/10.1109/SLT.2010.5700816
 Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao, C., Rudnicky, A., & Shriberg, E. (1994). Expanding the scope of the ATIS task : The ATIS-3 corpus. Proceedings of the Workshop on Human Language Technology - HLT '94, 43. https://doi.org/10.3115/1075812.1075823

	Domain	Language	Collect Method	Annotation		Labal da
	Weather information.				Token	référence
	restaurant booking,				add	0
	Music, etc.			Manual annotation	another	0
	7 tasks:	English,		by Amazon	song	0
	SearchCreativeWork,	French,	ASR system +	Mechanical Truck	to	0
SNIPS	GetWeather,	German,	manual	crowdsourcing	the	0
	BookRestaurant, PlavMusic.	Spanish and Korean.	verification	Annotation in intents & concepts	Cita	B-playlist
	AddToPlaylist,			BIO encoding	Romantica	I-playlist
	RateBook, SearchScreeningEvent				playlist	0

Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., Lavril, T., Primet, M., & Dureau, J. (2018). Snips Voice Platform : An embedded Spoken Language Understanding system for private-by-design voice interfaces. ArXiv:1805.10190 [Cs]. http://arxiv.org/abs/1805.10190

Corpus	Domaine	Langue	Méthode de collecte	Annotation
M2M	A fusion of two datasets containing dialogues for restaurant and movie ticket booking.	English	Automatic dialogue & crowdsourcing (1) Providing a task schema and an API client (2) Generation of dialogue outlines (3) Rewriting the utterances and validating slot spans (4) Training a dialog model with supervised learning on the dataset.	 Automatic reading of the dialogues generated between 2 chatbots (BU & BS) generating a sequence of annotations for each round of dialogue. Dialogue frame annotation encoding the dialogue act sentence (intent) and a slot value Repeat the process until the user's goals are met and the user exits the dialog with a "bye ()" act, or a maximum number of turns is reached. The remaining rounds of dialogue are annotated with two simpler crowdsourcing tasks: "Does this utterance contain this particular location value?" and "Do these two statements have the same meaning?" BIO encoding

Shah, P., Hakkani-Tür, D., Tür, G., Rastogi, A., Bapna, A., Nayak, N., & Heck, L. (2018). Building a Conversational Agent Overnight with Dialogue Self-Play. ArXiv:1801.04871 [Cs]. http://arxiv.org/abs/1801.04871

Label de

référence O

0

0

0

date-B

0

0

theatre_name-B

theatre_name-I

Token

the

date

is

this

wednesday

at

the

camera 7

	Domaine	Langue	Méthode de	Annotation	Token	Label
	Domaine	collecte		ça	0	
				• Manual transcription and annotation with	fait	0
				concepts according to a rich semantic	à	B-comparatif-
				ontology + BIO encoding	a	paiement
			Collection by	• The semantic dictionary used for the	``````````````````````````````````````	I-comparatif-
			ELDA Wizard	annotation of the MEDIA corpus associates	a	paiement
			of Oz approach	with a word or a group of words a concept-	2011	I-comparatif-
			The recording	value pair then a specifier defining	peu	paiement
	Touristic	F 1	platform	relations between concepts and finally an	pràs	I-comparatif-
MEDIA	information	French	included an	affirmative, negative, interrogative or	pres	paiement
			automatic	possible mode, attached to the concept.	combien	B-objet
			beln agents	In voudrais reserver commande	pour	0
			with their	+(affirmatif) - reservation	une	B-nombre
			responses.	une chambre chambre-quantite +	-1	B-chambre-
				reservation 1	chambre	type
				pour deux nuits sejour-nbNuit +	simple	B-chambre-
				reservation 2	simple	type

Corpus	Domaine	Langue	Méthode de	Annotation	Token	Label de référence
Corpus	Domaine	Lungue	collecte	7 minotution	[CLS]	Music_play
	Set of skills and				je	0
	interactions with				veux	0
	corporate services				une	0
	with its partner		Real logs ASR transcription	Semantic annotations directly performed on ASR transcriptions	playlist	B- designator_playlist
	Deezer, Orange Radio, telephony), general services (weather forecast, shopping, calendar, news) and general interaction	French			de	0
DJINGO SPK					rock	B-playlist
20100_011					road	I-playlist
					trip	I-playlist
					[CLS]	Smart_Home_Turn_On
	with customers (small				la	B-object_name
	interviews, global				lumière	I-object_name
	orders).					

DATASETS' CHARACTERISTICS

Corpus _test	Djngo_SPK	Atis	Media	Snips
#word	34938	8333	25977	6595
#sent	9984	893	3005	700 (100 sent par intent)
Vocabulary	2637	485	1219	1752
#concept	34	84	70	39
#intent	109	-	-	7
%OOD sentences	6.6%	0	0	0
% sent in train	76.9%	1.9%	44.6%	0.9%
% sent with concept	59.3%	99.3%	86.5%	100%
Av sent length	4.2	10.3	7.6	9.16
Concept av_length	1.5		1.99	1.77

Caractéristiques du corpus DJINGO

- > The biggest
- Most frequent number of intents and least frequent number of concept
- Out-of-domain sentences
- > The majority of sentences are seen in train data
- Unequal distribution of concepts over sentences
- \succ The shortest sentences
- $\succ \quad Compound \ concepts \ (B + I) \ less \ frequent \ than$

Media and Snips and more frequent than Atis.

Models

		pretraining	self	bigru	lstm	fine-tuning
			attention			
DJINGO_SPK		DistilBERT	M1	M2	M3	
		CamemBERT				M4

		pretraining	bigru	gru	self attention
BENCHMARK CORPORA		BERT	M1	M3	M5
	I	random	M2	M4	M6

Table 2: Description of models M1 to M6 in terms of pretraining conditions and DNN architecture

APPROACHES: Second Step

- 1. Describe each word in the test corpora of each SLU corpus with characteristics independent of language and subject and independent of the concept (Generic features GF)
- 2. Train a classifier on the corpora described by GFs to predict complexity labels (AC or NCE) (bonzaiboost: decision tree + boosting)
- 3. Evaluate the performance of a model on corpora distributed in AC and NCE (the labels predicted by the classifier)
- 4. Analyzing complexity factors in NCE

COMPLEXITY FEATURES

GF complexity categories:

- **Ambiguity**: long statement, multiple verbs, disfluencies ...
- Coverage: OOV, rare
 association between token label, new word n-gram

Ambiguity
of semantic labels acceptable for W
of Part-Of-Speech (POS) acceptable for W + POS label
of possible syntactic dependency for W + dependency label
distance between W and the sentence syntactic root.
utterance length (in words)
% of words in S belonging to a concept
Coverage
of occurrences of W in train
of occurrences of (W, l) in train
is bigrams $(W - 1, W)$ and $(W, W + 1)$ occurring in train?
Table 1: The Congrist Feature (CE) set

Table 1: The Generic Feature (GF) set

BENCHMARK CORPORA RESULTS Models' performance

development corpus	ATIS	MEDIA	SNIPS	M2M
#word	8333	25977	6595	28119
#sent	893	3005	700	4800
#concepts	84	70	39	12
Concept detection	performa	ince for mod	lels M1	M6
Fmes(M1,all)	94.6	85.7	95.4	91.5
Fmes(M2,all)	93.8	81.7	69.6	91.7
Fmes(M3,all)	94.7	85.8	95.2	93.6
Fmes(M4,all)	79.0	60.1	69.0	91.0
Fmes(M5,all)	94.8	85.3	95.9	93.0
Fmes(M6,all)	77.4	59.8	68.9	91.0
Repartition into eas	y (AC) an	d difficult (N	VCE) sente	nces
AC	46.2%	54.3	35.1	84.2
NCE	53.8%	45.7	64.9	15.8
Performance of m	odel M1 o	on AC and N	CE senten	ces
Fmes(M1,AC)	98.7	98.5	99.7	99.0
Fmes(M1,NCE)	91.7	82.3	93.1	68.6

=> Performance obtained with a state-ofthe-art model (M1) is much worse on NCE utterances compared to AC utterances

Table 3: Corpora characteristics and concept detection performance for SLU models M1...M6 on all sentences (all), and model M1 on easy sentences (AC) and difficult sentences (NCE)

BENCHMARK CORPORA RESULTS

Bonzaiboost classification performance

 \Rightarrow F-measure over 93% for label AC

 \Rightarrow F-measure almost 60% for label NCE

=> Encouraging results: Complexity labels were predicted with any lexical or semantic information

ATIS	Precision	Recall	F-measure
AC	91.75	98.26	94.89
NCE	60.61	23.26	33.61
MEDIA	Precision	Recall	F-measure
AC	82.55	87.82	85.11
NCE	63.03	52.80	57.46
SNIPS	Precision	Recall	F-measure
AC	92.54	96.04	94.26
NCE	58.93	42.31	49.25
M2M	Precision	Recall	F-measure
AC	98.08	99.89	98.98
NCE	97.00	65.10	77.91
	All co	rpora	
all	Precision	Recall	F-measure
AC	91.58	95.57	93.53
NCE	68.42	52.21	59.23
All	88.83	88.83	88.83

Table 4: Classification performance on AC/NCE labels with theGF feature set. Training on the union of all corpora.

BENCHMARK CORPORA RESULTS

Analysis of NCE decisions in terms of the respective weights of the ambiguity and coverage features

- \Rightarrow Depending on the corpus considered, the complexity can come because of:
- □ Coverage issues (ATIS & M2M)
- □ Ambiguity issues (MEDIA)
- Coverage & Ambiguity (SNIPS)

=> The classifier can still be used to accurately partition a corpus according to criteria linked to the utterance complexity and the sources of this complexity.

ATIS	weight(NCE,AMBIG)	weight(NCE,COVER)
reference	13.1%	86.9%
prediction	19.9%	80.1%
MEDIA	weight(NCE,AMBIG)	weight(NCE,COVER)
reference	84.4%	15.6%
prediction	84.3%	15.7%
SNIPS	weight(NCE,AMBIG)	weight(NCE,COVER)
reference	37.2%	62.8%
prediction	23.5%	76.5%
M2M	weight(NCE,AMBIG)	weight(NCE,COVER)
reference	4.1%	95.9%
prediction	2.3%	97.7%
all	weight(NCE,AMBIG)	weight(NCE,COVER)
reference	65.8%	34.2%
prediction	68.0%	32.0%

Table 5: % of weight for boosting rules belonging to the ambiguity (AMBIG) category vs. the coverage (COVER) category.

APPLICATION ON DJINGO_SPK

EVALUATION METHODS

3 possible levels to evaluate

- 1. Token's level
- label correct = O or label of concept with borders (B and I) correct
- label correct = O or label of concept without borders correct
- concatenated label correct = intent-O + intent-concept with borders correct
- concatenated label correct = intent-O + intent-concept without borders correct
- 2. Entity's level
- entity correct = concept correct
- entity correct = concept + intent correct
- entity correct = concept + borders correct
- entity correct = (concept +borders correcte) + intent correct
- 3. Sample's level
- sample correct = intent correct
- sample correct = all the concepts + all the borders of a sample correct
- sample correct = (all the concepts + all the borders of a sample correct) + intent correct

EVALUATION METRICS

Token's level	Entity's level	Sample's level
Accuracy (nb labels corrects/nb tokens)	Précision for each concept (P) (nb concepts ok) / (nb concepts hyp) Recall for each concept (R) (nb concepts ok) / (nb concepts ref)	Accuracy (nb samples corrects/nb samples)
	FI mesure for each concept = $\frac{2*P*R}{R+P}$ F1 Macro = $\frac{1}{N}\sum_{i=0}^{N} F1$ score F1 Micro =	
21 Interne Orange	2*P_global*R_global R_global+P_global	

COMPLEXITY FACTORS IN DJINGO_SPK

Partition	AC	NCE	ALL
coverage	86.5%	13.5%	100%
token accuracy	98.6	92.4	97.3
F1 concepts	95.6	83.8	92.2
sample accuracy (intents + concepts OK)	95.7	79.7	93.5
Weight (AMBIG)	-	28.9	-
Weight(COVER)	-	71.1	-

- ▶ 16% drop between results on AC partition vs NCE
- Most of the complexity factors come from coverage issues
- Almost of 30% of the complexity factors come from ambiguity issues

COMPLEXITY FACTORS IN SLU CORPORA

NCE Weight %	DJINGO_ SPK	ATIS	SNIPS	MEDIA	M2M
Ambig	28	19.9	23.3	84.3	2.3
Cover	71.1	80.1	76.5	15.7	97.7

% weight of difficult utterances (NCE) - AMBIG vs COVER

✤ MEDIA > SNIPS > DJINGO_SPK > ATIS > M2M

Conclusion

- The Djingo corpus is different from other public SLU corpus since it is the result of a collection in real situation
- It is possible to measure the quality of the corpora and understand the complexity factors without retraining.
- We could analyze other complexity factors by adding other families to the GFs and conclude rules measuring the degrees of difficulty of NLU corpora.

Merci

DJINGO_SPK RESULTS Models' performance

Token's evaulation level	Self- attention	Bi-Gru	LSTM	CamemBert
Accuracy				
label = O & concepts	96.94	96.85	96.70	97.31
(nb labels corrects/nb tokens)				
Accuracy				
Label = (O-intents) + (concepts-	02.7	02 21	02.59	02 10
intents)	92.7	92.31	92.58	93.19
(nb labels correct/nb tokens)				

Close results

CamemBert has the best performance

DJINGO_SPK RESULTS Models' performance

Sample's evaluation level	Self-attention	Bi-Gru	LSTM	CamemBert
Accuracy Sample correct = intent correct	96 33	95.87	96 36	96 48
(nb samples corrects/nb samples)				
Accuracy Sample correct = all concepts + boundaries correct (nb samples corrects/nb samples)	94.93	94.29	94.40	95.39
Accuracy Sample correct = intent + all concepts + boundaries correct (nb samples corrects/nb samples)	93.17	92.11	92.61	93.51

> Accuracy results at **intent+concepts+borders** level are the least efficient

DJINGO_SPK RESULTS Models' performance

Entity's evaluation level	Self-attention	Bi-Gru	LSTM	CamemBert
F1 Macro (concept + frontière)	79.38	76.67	74.61	81.11
F1 Macro (concept + frontière + intent)	76.47	73.51	71.9	78.26
F1 Micro (concept + frontière)	91.93	90.34	90.42	92.22
F1 Micro (concept + frontière+intent)	88.57	86.61	87.14	88.98

L'évaluation au niveau entité est plus stricte que les deux autres évaluations

Résultats d'un modèle entrainé sur les corpus SLU

réseau : self-attention

Corpus	ATIS	MEDIA	SNIPS	DJINGO
Niveau token				
Accuracy	07.7	80 6	07.9	06.0
label = O et concepts	91.1	89.0	97.0	90.9
(nb labels corrects/nb tokens)				
Niveau sample				
Accuracy				
Sample correct = tous les	88.1	76.1	90.3	91.9
concepts + frontières corrects				
(nb samples corrects/nb samples)				
Evaluation niveau concept	04.9	05.2	05.0	04.0
F1 Micro	94.8	85.5	אייא.א	94.9

 Résultats proches
 Les résultats du modèle entrainé sur le corpus MEDIA sont les moins bons

Les résultats d'un même modèle entrainé sur chaque corpus et les métriques d'évaluation n'expliquent pas pourquoi un corpus est plus complexe ou plus difficile qu'un autre