Vision and Language Pretrained Models

Aix Marseille Université - LIS - TALEP Emmanuelle Salin 18 janvier 2021

Introduction

Multimodality

Vision Language Multimodality

• They are different types of relationship between image and text in a multimodal document

 Information is often complementary between images and text

• The fusion of the vision and language modalities is needed to fully extract relevant information

Additive

An old favorite that feels relevant these days. Art is a reflection of our society. The beauty of it as well as ugliness. To censor it is an attempt to stifle awareness, education, and critical thinking.

Parallel

An aerial view of the flowers left outside Buckingham palace after the death of Princess Diana, 1997.

Divergent

Good Morning.

From: Integrating text and image: Determining multimodal document intent in instagram posts

Examples of Vision Language Multimodality

Title: Avenue de Clichy -Five O'Clock in the Evening Author: Louis Anquetin Type: Landscape School: French Timeframe: 1851-1900

This painting is said to have inspired Van Gogh in painting his famous Café Terrace at Night.

Impression:

No acute cardiopulmonary abnormality.

Findings:

There are no focal areas of consolidation. No suspicious pulmonary opacities. Heart size within normal limits. No pleural effusions. There is no evidence of pneumothorax. Degenerative changes of the thoracic spine.

MTI Tags: degenerative change

From: How to Read Paintings: Semantic Art Understanding with Multi-Modal Retrieval From: On the Automatic Generation of Medical Imaging Reports

Multimodal Representations

Pre-training, Datasets, Tasks

Pre-training: From Natural Language Processing to Vision and Language

• Recent advances in NLP shifted towards pre-training self-supervised models on large unlabelled corpora (BERT). The goal is to learn linguistic knowledge that can be used for supervised tasks with less available data.

• For Vision and Language (VL) pre-training, the goal is to learn a selfsupervised model able to extract visual and linguistic information from the documents and combine appropriately, so that the model can be used for multimodal supervised tasks. Pre-training datasets for Vision and Language

To pre-train Vision and Language models, large corpora with parallel vision and language information are needed.

The most popular datasets are Microsoft COCO, Visual Genome, Google Conceptual Captions and SBU Captions (intersection from COCO).

Dataset	# Images	# Captions	Caption Length
MSCOCO	113K	567K	11.81 ± 2.81
VG	108K	5.41M	5.53 ± 1.76
GCC [†]	3.01M	3.01M	10.66 ± 4.93
\mathbf{SBU}^{\dagger}	867K	867K	15.0 ± 7.74

From: ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

Microsoft COCO Examples

A man holding a child while standing at the fence of an elephant zoo enclosure.

The horse and puppy are separated by the mesh fence.

Visual Genome Examples

A man and a woman sit on a park bench along a river.

Park bench is made of gray weathered wood

The man is almost bald

Google Conceptual Captions and SBU Captions Examples

Murray in cat bed, Neko not in cat bed

GCC Dataset

Vision Language downstream Tasks

- There are different types of supervised vision/language tasks, for example:
 - Visual Question Answering
 - Visual Commonsense Reasoning
 - Image-Text Retrieval
 - Visual Entailment
 - Referring Expressions

Task	Datasets	Image Src.	#Images	#Text	Metric
1 VQA	VQA	COCO	204K	1.1M	VQA-score
2 VCR	VCR	Movie Clips	110K	290K	Accuracy
3 NLVR^2	$\rm NLVR^2$	Web Crawled	214K	107 K	Accuracy
4 Visual Entailment	SNLI-VE	Flickr30K	31K	507K	Accuracy
5 Image-Text Retrieval	COCO	COCO	92K	460K	Recall@1,5,10
o image-rext netrieval	Flickr30K	Flickr30K	32K	160K	Recall@1,5,10
	RefCOCO		20K	142K	
6 RE Comprehension	$\operatorname{RefCOCO}+$	COCO	20K	142K	Accuracy
	RefCOCOg		26K	95K	

Examples of Supervised Tasks for Vision and Language

Visual Question Answering

Who is wearing glasses? woman man

Is the umbrella upside down?

Premise

From: Visual Entailment: A Novel Task for Fine-Grained Image Understanding

Visual Entailment

From: https://visualqa.org/

Where is the child sitting?

fridge arms

	Hypothesis		Answer	
	• An Indian woman is putting her laundry into the machine.	•	Contradiction	
· .	 An Indian woman is doing laundry for her son in the lake. 	•	Neutral	
-	 An Indian woman is doing her laundry in a lake. 	•	Entailment	

Vision Language Pretrained models

Models, Architecture, Pre-training tasks and Evaluation

State-of-the-Art Vision and Language models

Various pre-trained Transformer-based Vision and Language models have been developed in recent years, inspired by the advances in NLP

ViLBERT	NeurIPS 2019	Georgia Tech, FAIR
LXMERT	EMNLP 2019	UNC Chapel Hill
VL-BERT	ICLR 2020	Microsoft Research Asia
VisualBERT	ACL 2020	University of California
Unicoder-VL	AAAI 2020	Peking University
UNITER	ECCV 2020	Microsoft Dynamics 365
OSCAR	ECCV 2020	Microsoft Corporation

General Architecture of Transformer-based VL models

Most SOTA Vision and Language models use the same concept as BERT. The only supervision used is the fact that the image/caption is a pair.

From: VISUALBERT: A SIMPLE AND PERFORMANT BASELINE FOR VISION AND LANGUAGE

Model Input - Vision and Language

• The input of the model is composed of a sequence of word pieces and image regions, with a [CLS] token used for the pre-training objectives

• The image regions used as input can follow a grid of the image, or use detected object regions in the image

 In most models, the visual regions used as input are obtained with an object detection model to detect relevant image regions

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

Faster RCNN: object detection

- The Faster RCNN:
 - generates "bounding boxes" of possible objects
 - obtains features of these objects
 - predicts which class the object belongs to
 - makes the coordinates of the object bounding box more precise
- In VL models, the faster RCNN is pretrained on Visual Genome dataset
- A sequence of the most probable bounding boxes is given as input of the VL model

From: Faster R-CNN for object detection

Faster RCNN: object detection

- The VinVL model uses a larger object detection module trained on a bigger dataset. It can detect 1,594 object classes and 524 visual attributes
- Using this module leads to SOTA results on seven major VL benchmarks (Visual Question answering, Image Captioning)
- It shows that there is room for improvement to extract all relevant visual information from the image
- However, the use of a faster RCNN can be time and resource consuming

Transformer Architecture

- An important point of a Vision Language model is how the two modalities are combined:
 - If the fusion is early, the model is a single stream architecture, which means that a single transformer combines vision and language (VisualBert, Unicoder-VL, UNITER...)

Single Stream Architecture (Unicoder-VL)

Transformer Architecture

- An important point of a Vision Language model is how the two modalities are combined:
 - If the fusion is early, the model is a single stream architecture, which means that a single transformer combines vision and language (VisualBert, Unicoder-VL, UNITER...)
 - In the case of double stream architecture, there is an encoder for each modality before a cross modality encoder. As a result, the model has more parameters to learn. (VilBERT, LXMERT ...)

Vision Language Pre-Training Tasks

- In NLP pre-trained models, the pre-training objective is usually Masked Language Modeling, which consist in masking a portion of the input tokens and predicting them.
- This task can be found as "Masked Language Modeling with Visual Clues" in all vision language transformer models, as it is essential to learn linguistic knowledge
- Other self-supervised tasks have been developed to learn to extract visual knowledge and to combine modalities. UNITER is the model which shows the most complete set of tasks among SOTA models
- Some models use tasks with additional supervision such as tags (OSCAR) or Visual Question Answering (LXMERT)

UNITER Pre-training Tasks

Visual Self-supervised Tasks

- Similar to Masked Language Modeling, Masked Region Modeling consists in masking some input regions, to reconstruct them given the remaining regions and the words. Several variations of this task are used by different models.
- Masked Region Feature Regression learns to regress the output of a masked region to its visual features
- Masked Region Classification (hard) learns to predict the object class of a masked region. There is no ground truth, the result is compared to the most probable output of the Faster-RCNN
- Masked Region Classification (soft) uses soft labels instead of heard labels to predict the object class of the region

Cross-Modal Self-supervised Tasks

- For Image Text Matching pre-training, a [CLS] token is used to indicate the fused representation of image and text. The output is a binary label checking if the image/text pair is a match, supervised over the [CLS] token. This technique is similar to the Next Sentence Prediction task used by BERT
- Some models (UNITER, ViLT) use a Word Region Alignment task, which computes the alignment score of the smaller units (regions and words)

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

Pre-training tasks: ablation studies on UNITER

- UNITER does not check all combinations of pretraining tasks in its ablation studies
- The results show that pretraining tasks improve the performance, but further evaluation is necessary to check the significance of this improvement

Pre-training Da	ta	Pre-training Tasks	Meta-Sum	VQA	IR (Flickr)	TR (Flickr)	$NLVR^2$	Ref- COCO+
				test-dev	val	val	dev	val^d
None	1	None	314.34	67.03	61.74	65.55	51.02	68.73
Wikipedia + BookCorpus	2	MLM (text only)	346.24	69.39	73.92	83.27	50.86	68.80
	3	MRFR	344.66	69.02	72.10	82.91	52.16	68.47
	4	ITM	385.29	70.04	78.93	89.91	74.08	72.33
	5	MLM	386.10	71.29	77.88	89.25	74.79	72.89
T	6	MLM + ITM	393.04	71.55	81.64	91.12	75.98	72.75
In-domain (COCO+VG) 8	7	MLM + ITM + MRC	393.97	71.46	81.39	91.45	76.18	73.49
	8	MLM + ITM + MRFR	396.24	71.73	81.76	92.31	76.21	74.23
	9	MLM + ITM + MRC-kl	397.09	71.63	82.10	92.57	76.28	74.51
	10	MLM + ITM + MRC-kl + MRFR	399.97	71.92	83.73	92.87	76.93	74.52
1	11	MLM + ITM + MRC-kl + MRFR + WRA	400.93	72.47	83.72	93.03	76.91	74.80
- 1	12	MLM + ITM + MRC-kl + MRFR (w/o cond. mask)	396.51	71.68	82.31	92.08	76.15	74.29
Out-of-domain (SBU+CC)	13	MLM + ITM + MRC-kl + MRFR + WRA	396.91	71.56	84.34	92.57	75.66	72.78
In-domain + Out-of-domain	14	MLM + ITM + MRC-kl + MRFR + WRA	405.24	72.70	85.77	94.28	77.18	75.31

Table 2: Evaluation on pre-training tasks and datasets using VQA, Image-Text Retrieval on Flickr30K, NLVR², and RefCOCO+ as benchmarks. All results are obtained from UNITER-base. Averages of R@1, R@5 and R@10 on Flickr30K for Image Retrieval (IR) and Text Retrieval (TR) are reported. Dark and light grey colors highlight the top and second best results across all the tasks trained with In-domain data

Evaluation of pre-trained models

- Similarly to pre-trained models in NLP, the evaluation of those models is done on downstream tasks, however, no benchmark has yet been developed to compare different models, so the comparison is mostly done by the authors on chosen tasks
- As four different datasets can be used for pre-training, different authors use a different combination of those dataset, making the comparison of different models more challenging. Additionally, for some models, the pre-training and supervised tasks are based on the same dataset
- However, these models usually require fine-tuning for a good performance, as the supervised task is too complex. As a result, the evaluation is not based on the pre-trained but the fine-tuned representations. Developing appropriate Vision Language probin tasks is necessary to evaluate the representations

Conclusion

Analysis, Challenges

The importance of pre-training conditions

In Multimodal Pretraining Unmasked: Unifying the Vision and Language BERTs, the authors show that:

- Training data and hyperparameters seem to be responsible for most of the differences between the reported results
- In particular, single and dual stream transformer models seem to be on par
- the embedding layer (and position encoding) plays a crucial role in the performance

Figure 1: How does the amount of pretraining data affect downstream performance of V&L BERTs? We find that these models perform *more similarly* when trained in the *same conditions*. This plot shows the results from the papers (\diamond), and when each model is pretrained 10 times on the Conceptual Captions dataset and fine-tuned once on the NLVR2 verification task (\circ). The size of a marker is proportional to the amount of pretraining data.

Future Research

 Research is currently mostly focused on improving the accuracy of vision language models, but some authors have developed lightweight models, such as MiniVLM

- Studies have shown that pre-trained NLP models are subject to bias, it is even more the case for multimodal representations
- Pre-training tasks are an important part of future research, and could be improved for better generalization of the representations
- Selection and generation of difficult examples could help for certain tasks such as Image Text Matching

Questions ?